
Linear algebra notes

C. Eric Overton-Walker

These notes are written for a 24 day summer course (1.5 hour lectures). I wrote the syllabus to include
two exams and numerous in-class quizzes, so that leaves 22 days of roughly 1 to 1.5 hour lectures. I aim to
complete about 1 section of the textbook [LDP06] each lecture, though if I get ahead I’ll bank that time.
I’m to cover chapters 1 through 6 and these notes do so (skipping a few sections), but if at the end of the
semester I’m not done then that’s okay; we’ll just test over what we completed.

We freely use [LDP06] for course structure and most examples. Any errors are my own.
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How to think about this class

Welcome to the most important math class you’ll ever take.
I believe I can say that with confidence, no matter your background and no matter your intentions for

the future. From the purest mathematician to the most applied scientist, linear algebra is a critical pillar of
your education and an absolutely necessary tool to have in your toolbox.

As I currently write this (April 2023), it’s been close to a decade since I’ve really thought about any sort
of applied mathematics. Yet I use linear algebra basically every day. The same is true for the colleague I
share an office with, who is at the other extreme: working in a very applied domain, in tandem with the
data science department. Understanding linear algebra is necessary to both of our jobs.
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What’s more, it requires a deep understanding; it’s not enough to solely be able to compute examples.
Everyone needs to know this tool like the back of their hand, and that means not only a fluency in working
with examples but an understanding of why the tools work. We’ll see theory in this class, do some proofs
together, and I’ll expect you to do the same in submitted work (albeit in a smaller, controlled environment
– so don’t worry if you’re still new to proofs).

Why is linear algebra so important to us, and why specifically the theory? It’s because this will be
essentially the only math class you ever take which is anywhere close to being a “solved subject.” People can
and do work in active research in every math class you’ve taken and every math class you will take. Often
their work looks dramatically different to what you cover during class, but they’re still pushing the needle.
Moreover, it’s often very easy, even as a student in those classes, to ask a question, innocent-seeming though
it might be, and fully in the language of the class itself – no esoteric terms – for which the answer requires
weeks to unpack, or a graduate-level education, or is in fact still an open problem. For instance:

• Are there infinitely many primes separated by 2?
• Given an elementary function, calculate its antiderivative in terms of elementary functions.
• What are all the roots of the function ζ(s) = 1 + 1/2s + 1/3s + 1/4s + 1/5s + · · · ?
• Are there any sets which are bigger than N but smaller than R?
• Are various natural complexity classes distinct?

But linear algebra, or at least the linear algebra of finite-dimensional vector spaces and their linear
transformations (we will learn these words!), is much more thoroughly understood. By the end of the
semester, we’ll have close to a complete understanding of these topics. And yes, you can still ask questions
for which answers aren’t known, but I wager it’s a lot harder to do – try me, and see if you can!

It’s this reason that makes linear algebra so important. It’s so well-understood! That means it’s an
incredibly useful tool. Moreover, if you are handed a really hard problem outside of this class, but you can
reduce it to a linear algebra problem, then you’ve made the problem that much more tractable. Whole
domains in mathematics are progressed in this way. And of course scientists gain the same benefits: any
question which can be reduced to a linear system, any function which can be linearly approximated, any
concept which yields to linear algebra, is a concept that can be understood. Computers basically only do
linear algebra, and they do it very, very, very well. A CPU (or GPU) is just a machine that can calculate a
bunch of linear algebra problems billions of times a second.

Tips for success

Because linear algebra is such an important class, it is worth your effort to master it. On top of that, this
class is often a student’s first exposure to upper level math – the only prerequisite for this course at our
university is calculus 1 (not proof-based). So this course often requires an adjustment from the “plug-and-
chug” experiences you’ve had in all your past math classes. Here are some general words of wisdom I wish I
had heard (or, that I did hear, but wish I had taken to heart).

You’ll have to invest a lot of work outside of lectures. That’s especially true given the fast paced nature
of a summer course, but it’s true even for the typically paced 16 week series. Students often feel like they
follow along in lecture, which is great! But please don’t stop there complacently. The homework is incredibly
important in this regard; math is not a spectator sport and only by doing do you figure out what you have
and have not yet mastered.

The rule of thumb is that you should expect to spend about double to triple the time on material outside
of class that you do inside it. We only meet for 36 hours all semester, so expect to spend over 100 hours
throughout the summer on linear algebra. This need not all be spent on homework, and please note that
that time should be productively spent. It’s normal to struggle a bit at first (everyone does – no one comes
out of the womb knowing this material!) but if you are staring at a question for 30 minutes without knowing
where to start, you should readjust. Ask yourself:

• What information has this problem given me? Write it down.
• What am I being asked to do? What would a correct final answer look like? Write an example. When
you are finished, compare your answer to what you wrote here.
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• Do I know all the definitions of the words involved? Write them down.
• Are there any theorems which I can use that relate the inputs I am given to the outputs I am seeking?
Write them down.

• Have I seen similar problems in the lecture notes or textbook? Pull them up and compare those
problems to your current problem; depending on how similar they are, would the solutions also be
similar? Write a solution to your problem which mirrors those solutions. Does it work? If not, where
must they differ?

This is likely your first exposure to proofs, which can be intimidating (but very rewarding too! They
inspire my love of math). In general, following a logical argument can be complicated, but some advice
below may make it easier. When you read a theorem, ask yourself:

• What are the hypotheses?
• What is the conclusion?
• What are all the definitions?
• What is an example of an object that meets the hypotheses? What does the conclusion say about
the object? Can you work that out by hand to confirm? An example does not a proof make, but
are there aspects about your example that feel universal – like they would work for any example? If
you’re unsure, repeat this bullet point with an example that’s as different as you can manage while
still meeting the hypotheses.

• Before reading the proof, attempt a proof yourself. After your attempt, compare to the notes or
textbook. There are often many ways to prove something, but were your approaches similar? Does
the proof do something or address a feature that your attempt did not anticipate?

• When you read the proof, can you follow the order of steps? Ask yourself: if I currently know “X,”
then we should do “Y ,” and therefore “Z,” . . .

• After reading the proof, take an example of an object that meets the hypotheses, and apply every step
of the proof to that example. Confirm that after you’re done, your example satisfies the conclusion.

• There will never be an extraneous hypothesis in our class (to the best of my knowledge). Where is
each hypothesis used in the proof?

• What happens if you remove a hypothesis? What part of the argument fails? Can you construct a
specific counterexample without that hypothesis where the conclusion fails?

In addition to the homework, it’s very productive to read the textbook, both in advance and after the
fact. Before a lecture, read through the corresponding section. At this stage, pay particular attention to
definitions and examples. Namely:

• For each definition, can you write down an example without looking at the book?
• Double check the textbook’s examples. Confirm that everything they say is an “X” actually is and
that all the arithmetic they do is correct. (Often, the textbook chooses to skip some detail checking
for expedience or to defer to the exercises – do this detail checking! )

• When you get to theorems, take the advice above, but be aware that it’s okay if something doesn’t
click the first time. Focus mostly on the theorem statement and examples. You should attempt a proof
and read the textbook’s, but it may take time to fully internalize.

• Flag any concepts you’re uncomfortable with, and pay particular attention to those during lecture.

After class, read the textbook again with an eye for self-reflection and detail-scrubbing. In particular:

• Did you make any mistakes when you first read?
• Were there nuances pointed out in lecture that didn’t come across when you first read?
• Returning to the theorems, how does the lecture’s proof compare to the book’s, and how do both
compare to your first attempt?

• Do you now confidently understand the concepts you flagged? If not, follow up.
• Can you explain the section? Could you produce a lecture to your peers? How about to people
unfamiliar with the material? A “yes” here is strong evidence of your mastery (but be honest with
yourself!). Put it to the test and lecture to your roommate, pet, rubber duck, . . .
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Day 01 of 24 – §1.1 Systems of linear equations

Let’s start with a high school level problem.

Example 1. Solve the system of equations {
y = 2x − 1
y = − 1

2x + 4

For some notational consistency with future stuff, we’ll rewrite:{
−2x + y = −1

x + 2y = 8

We know how to do this. Solving the system means finding an ordered pair (x, y) such that when you plug
in that point, both equations spit out true statements. It’s easy to solve, for instance, by multiplying the
bottom equation by 2: {

−2x + y = −1
2x + 4y = 16

combining like terms

0x+ 5y = 15

y = 3,

and backsubstituting to solve for x

x+ 2y = 8

x+ 2(3) = 8

x = 2.

Thus the solution is (2, 3). You can easily check:

−2(2) + 3 = −1 ✓

2 + 2(3) = 8 ✓

Remark 2. Recall that, graphically, plotting an equation in x and y is shading all the ordered pairs (x, y) in
the plane that make the equation true. Thus if a solution is a point that makes all equations true, pictorially
it is a point that lies on both graphs, hence an intersection point. Thus the graphical solution to our example
is

x

y
−2x+ y = −1

x+ 2y = 8

(2, 3)

What we’ve just seen is the main content of our course! Of course, we need not restrict to a system of
two linear equations, nor for that matter systems in the xy-plane.
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Definition 3. A linear equation in n variables is

a1x1 + a2x2 + · · ·+ anxn = b

where a1, . . . , an, b ∈ R and x1, . . . , xn are indeterminates. A linear system of m equations is a
collection of m linear equations

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

am1x1 + am2x2 + · · · + amnxn = bm

We’ll call this an m× n system for short. A solution to an m× n system is a ordered n-tuple
(x1, x2, . . . , xn) that satisfies all the equations (i.e., when you plug in you get true statements).

Example 4. Let’s consider two more systems.

{
2x1 + 3x2 = 1
4x1 + 6x2 = 3

{
3x1 − 2x2 = 1
6x1 − 4x2 = 2

Solve them:

{
4x1 + 6x2 = 2
4x1 + 6x2 = 3

0x1 + 0x2 = 1
0 = 1

{
6x1 − 4x2 = 2
6x1 − 4x2 = 2

0x1 + 0x2 = 0
0 = 0

That’s weird. On the first, we got a false statement, and on the second, a true statement. The first must
have no solutions, since there’s no ordered pair (x1, x2) which will ever make 0 = 1. And the second will
have infinitely many solutions. As soon as you pick any x1, you just choose x2 to be

3x1 − 2x2 = 1

−2x2 = 1− 3x1

x2 =
1− 3x1

2
.

So any (x1, (1− 3x1)/2) works. Like (0, 1/2), (1,−1), (2,−5/2), (3,−4), etc.
Graphically, we just solved these two systems:

x

y

2x1 + 3x2 = 1

4x1 + 6x2 = 3
x

y

3x1 − 2x2 = 1

6x1 − 4x2 = 2

If solutions are intersections, we can see the first must have 0 solutions, and the second has infinitely
many.
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Definition 5. An m×n linear system with no solutions (x1, x2, . . . , xn) is called inconsistent. It’s
consistent otherwise – one or more solutions.

Remark 6. A natural question (maybe the natural question): how do we know if a system is inconsistent?
And if it does have solutions, how many will there be? We’ve already seen 0 solutions (inconsistent), 1
solution, and infinitely many.

To answer this question, we need to systematize how to solve m × n systems, not just 2 × 2s. So what
are the algebra steps we use? What’s allowed?

Notice that we get our final answer of (n1, n2) when our arithmetic leads us to{
x1 = n1

x2 = n2.

At its core, that’s exactly what we were doing in Example 1. The algebra gave us{
y = 3

x = 2,

and of course those lines intersect at (2, 3).

x

y

y = 3

x = 2

(2, 3)

Definition 7. Given an m × n system, any other system which also has n indeterminates and has
the exact same set of solutions as the first is called equivalent to the first. Note: this is not equal !
Equal matrices have identical entries, but equivalent just needs the same solutions.

Example 8. From Example 1, {
−2x + y = −1

x + 2y = 8

and the system {
y = 3

x = 2

are equivalent. Again, this is not equal, so we don’t use “=.” We write{
−2x + y = −1

x + 2y = 8
∼

{
y = 3

x = 2

So, asking how to solve systems is the same as asking what arithmetic we can do that produces equivalent
systems. Here are some obvious things:

I. Swap the order of equations.
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Example 9. {
x1 + x2 = 2

2x1 − x2 = 3
∼
{
2x1 − x2 = 3
x1 + x2 = 2

II. Multiply (or divide) both sides of an equation by any nonzero number.

Example 10. {
2x1 − x2 = 3
x1 + x2 = 2

∼
{

2x1 − x2 = 3
−2x1 − 2x2 = −4

III. Add (or subtract) two equations.

Example 11. {
2x1 − x2 = 3
−2x1 − 2x2 = −4 ∼

{
2x1 − x2 = 3
0x1 − 3x2 = −1 (∗)

Let’s go ahead and finish solving this system. Use II. on the second equation by dividing by −3:

∼
{
2x1 − x2 = 3
0x1 + x2 = 1/3

Use III.:

∼
{
2x1 + 0x2 = 10/3
0x1 + x2 = 1/3

Finally use II. by dividing by 2:

∼
{

x1 + 0x2 = 10/6
0x1 + x2 = 1/3

Thus the solution is (10/6, 1/3).

Remark 12. In fact, I., II., and III. are all you need. In fact, we were basically home free when we got to
(∗). In fact, any time we’re at (∗) and the number of equations m and the number of indeterminates n are
the same, we have the following.

Definition 13. Anm×n system is said to be in strict triangular form / upper triangular form
if the ith equation has 0s for all the coefficients up to xi, but xi doesn’t have a 0 coefficient.

Example 14. Here’s some systems in upper triangular form:{
2x1 − x2 = 3
0x1 − 3x2 = −1 (∗)

 3x1 + 2x2 + x3 = 1
x2 − x3 = 2

2x3 = 4


2x1 − x2 + 3x3 − 2x4 = 1

x2 − 2x3 + 3x4 = 2
4x3 + 3x4 = 3

4x4 = 4
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The reason we’re home free is because you can solve this via backsubstitution. Let’s demonstrate with the
second example:

2x3 = 4

x3 = 2,

x2 − 2 = 2

x2 = 4,

3x1 + 2(4) + 2 = 1

3x1 = −9
x1 = −3.

The solution is (−3, 4, 2).

There’s a more efficient way to convey the information of a linear system:

Definition 15. An m× n matrix (pl. matrices) is an array of numbers

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 =
[
aij
]
1≤i≤m,1≤j≤n

.

When the aijs are coefficients of a linear system, we call A a coefficient matrix. For a given m×n
system 

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

am1x1 + am2x2 + · · · + amnxn = bm

,

we augment the coefficient matrix and produce
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

am1 am2 · · · amn bm

 .

We could also write [A | B], if we let B be the m× 1 matrix

B =


b1
b2
...
bm

 .

Remark 16. Notice that this conveys the exact same information as the linear system. Therefore, all the
same things we can do to linear systems, we can do to matrices. In particular, solving a system given by an
augmented matrix [A | B] means

I. Swapping two rows.
II. Multiplying (or dividing) rows by a nonzero number.
III. Add (or subtract) two rows.
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Example 17. Convert the system  x1 + 2x2 + x3 = 3
3x1 − x2 − 3x3 = −1
2x1 + 3x2 + x3 = 4

to a matrix and solve.  1 2 1 3
3 −1 −3 −1
2 3 1 4


The goal is to get to upper triangular. We call a11 = 1 the pivot and eliminate a21 and a31, then repeat. 1 2 1 3

3 −1 −3 −1
2 3 1 4

 R2−3R1∼

 1 2 1 3
0 −7 −6 −10
2 3 1 4

 R3−2R1∼

 1 2 1 3
0 −7 −6 −10
0 −1 −1 −2


Our new pivot is a22 = −7. Repeat:

R2−7R3∼

 1 2 1 3
0 −7 −6 −10
0 0 1 4


Now we can solve via backsubstitution:

x3 = 4

−7x2 − 6(4) = −10
−7x2 = 14

x2 = −2
x1 + 2(−2) + 4 = 3

x1 = 3

The solution is (3,−2, 4).

Homework 1. §1.1: 1b, 2b, 3d, 4d, 6a, 10

Day 02 of 24 – §1.2 Row echelon form

Example 18. Solve the system 
1 1 1 1 1
−1 −1 0 0 1
−2 −2 0 0 3
0 0 1 1 3

 .

R1+R2∼


1 1 1 1 1
0 0 1 1 2
−2 −2 0 0 3
0 0 1 1 3

 R3+2R1∼


1 1 1 1 1
0 0 1 1 2
0 0 2 2 5
0 0 1 1 3


Notice that we can’t get strict triangular form. But we keep going, with the pivot now a23 = 1:

R3−2R2∼


1 1 1 1 1
0 0 1 1 2
0 0 0 0 1
0 0 1 1 3

 R4−R2∼


1 1 1 1 1
0 0 1 1 2
0 0 0 0 1
0 0 0 0 1


The last two rows are equations of the form 0x1 + 0x2 + 0x3 + 0x4 = 1 and thus the system is inconsistent.
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Example 19. Solve the system 
1 1 1 1 1
−1 −1 0 0 1
−2 −2 0 0 2
0 0 1 1 2

 .

We see

R1+R2∼


1 1 1 1 1
0 0 1 1 2
−2 −2 0 0 2
0 0 1 1 2


R3+2R1∼


1 1 1 1 1
0 0 1 1 2
0 0 2 2 4
0 0 1 1 2


R3−2R2∼


1 1 1 1 1
0 0 1 1 2
0 0 0 0 0
0 0 1 1 2


R4−R2∼


1 1 1 1 1
0 0 1 1 2
0 0 0 0 0
0 0 0 0 0


In contrast, now we have equations of the form 0x1 + 0x2 + 0x3 + 0x4 = 0, which implies infinitely many
solutions. Solving this system means finding a 4-tuple with

x1 + x2 + x3 + x4 = 1

x3 + x4 = 2

Definition 20. The variables x1 and x3 in Example 19 are called lead variables, and the remain-
ing are called free variables.

Finishing Example 19, solving this system means

x3 = 2− x4

x1 = 1− x2 − x3 − x4

x1 = 1− x2 − 2.

You get infinitely many solutions. You’re allowed to choose whatever you like for the free variables, and then
the lead variables are forced upon you. The general solution is

(1− x2 − 2, x2, 2− x4, x4),

and some specific examples are:

x2 = 1, x4 = 0: (−2, 1, 2, 0),
x2 = 3, x4 = −1: (−4, 3, 3,−1),

etc.
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Definition 21. In both Example 18 and Example 19, the matrices weren’t in strict triangular
form but instead row echelon form. Using I., II., and III. to reach row echelon form is called
Gaussian elimination.

Example 22. Here’s some examples of row echelon form:1 4 2
0 1 3
0 0 1

 ,

1 2 3
0 0 1
0 0 0

 ,

1 3 1 0
0 0 1 3
0 0 0 0

 .

Example 23. Here’s some nonexamples:2 4 6
0 3 5
0 0 4

 ,

[
0 0 0
0 1 0

]
,

[
0 1
1 0

]
.

Definition 24. An m × n system is overdetermined if m > n; i.e., if there are more equations
than variables. It is underdetermined if m < n; i.e., if there are more variables than equations.

Remark 25. An underdetermined system can never have a unique solution. Consider a sample row echelon
form:

n︷ ︸︸ ︷
m



1 ∗ ∗ ∗ ∗ ∗


r0 1 ∗ ∗ ∗ ∗

0 0 0 1 ∗ ∗
0 0 0 0 0 !

You’ll have r ≤ m nonzero rows. So there will be r lead variables, and n − r free variables, but since
r ≤ m < n,

n− r > 0.

So either the system is inconsistent and there are no solutions (e.g., in the case that the ! is nonzero), or it’s
consistent, we have free variables to play with, and there are infinitely many solutions. But never a unique
solution.

Example 26. The underdetermined system[
1 2 1 1
2 4 2 3

]
R2−2R1∼

[
1 2 1 1
0 0 0 1

]
is inconsistent. (Visualize parallel planes in R3.)

Example 27. The underdetermined system 1 1 1 1 1 2
1 1 1 2 2 3
1 1 1 2 3 2

 ∼ · · · ∼
 1 1 1 1 1 2

0 0 0 1 1 1
0 0 0 0 1 −1
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has two free variables x2 and x3, and thus infinitely many solutions. We can find them explicitly by
continuing:  1 1 1 1 1 2

0 0 0 1 1 1
0 0 0 0 1 −1

 R2−R3∼

 1 1 1 1 1 2
0 0 0 1 0 2
0 0 0 0 1 −1


R1−R3∼

 1 1 1 1 0 3
0 0 0 1 0 2
0 0 0 0 1 −1


R1−R2∼

 1 1 1 0 0 1
0 0 0 1 0 2
0 0 0 0 1 −1


Thus

x1 = 1− x2 − x3

x4 = 2

x5 = −1

so solutions are the points (1− x2 − x3, x2, x3, 2,−1) for any x2 and x3.

Definition 28. We say a matrix is in reduced row echelon form when it’s in row echelon form
and also each leading 1 is the only entry in its column. Using I., II., and III. to reach reduced row
echelon form is called Gauss-Jordan reduction.

Example 29. Here’s some more matrices in reduced row echelon form:[
1 0
0 1

]
,

1 0 0 3
0 1 0 2
0 0 1 1

 ,

0 1 2 0
0 0 0 1
0 0 0 0

 ,

1 2 0 1
0 0 1 3
0 0 0 0

 .

Definition 30. An m× n system [A | B] is homogeneous if B = 0; e.g., a11 · · · a1n 0
...

...
...

am1 · · · amn 0

 .

Remark 31. A homogenous system can never be inconsistent. Why? Because (x1, x2, . . . , xn) = (0, 0, . . . , 0)
is always a solution. We call it the trivial solution.

If a homogeneous system has a unique solution, then it has to be (0, . . . , 0). But it doesn’t have to have
a unique solution. For instance:

Theorem 32. An underdetermined homogeneous system has nontrivial solutions.

Proof. Underdetermined systems must have either no solutions or infinitely many, by Remark 25. But
since there is at least one solution, namely (0, . . . , 0), there must be infinitely many.

Homework 2. §1.2: 2, 3, 4, 5e, 6c, 7

Day 03 of 24 – §1.3 Matrix arithmetic

We want to understand matrices more deeply than just for solving linear systems. First, some language:
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Definition 33. A matrix with one row or one column is called a vector, and is in bijection with a
tuple. That is, the row vector [

1 2 3
]

corresponds to the point (1, 2, 3), as does the column vector12
3

 .

We care about vectors because they can express points, and so in particular express solutions to m× n
systems. We can also express matrices in terms of its row or column vectors.

Example 34. The matrix

A =

[
3 2 5
−1 8 4

]
can be written

A =
[
a1 a2 a3

]
, a1 =

[
3
−1

]
, a2 =

[
2
8

]
, a3 =

[
5
4

]
,

or as

A =

[
a1
a2

]
, a1 =

[
3 2 5

]
, a2 =

[
−1 8 4

]
.

There’s no standard notation; your book uses bold for column vectors and arrows for row vectors. At first,
I’ll use bars for all vectors, rows or columns, but as the semester progresses we might drop the bar when it’s
clear from context.

We can do arithmetic with matrices:

Definition 35. If A is a matrix and α is a scalar, the scalar multiplication αA is the matrix whose
entries are all multiplied by α.

Definition 36. If A and B are two matrices of the same size, then the matrix addition A+B is
the matrix of added termwise entries.

Example 37.

2

[
3 4
−1 2

]
=

[
6 8
−2 4

]
Example 38. [

3 5 1
2 0 −3

]
+

[
1 0 −4
10 2 3

]
=

[
4 5 −3
12 2 0

]
.

Definition 39. If A and B are the same size, define matrix subtraction A−B to be A+ (−1)B,
which is indeed termwise subtraction.

13



We can also multiply matrices. The starting idea is that we want to compactly write an m× n system
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

am1x1 + am2x2 + · · · + amnxn = bm

as a product of matrices

Ax = b,

just like we can write a single linear equation as ax = b.
If we write

b =


b1
b2
...
bm


then we have the right hand side. For the left, write

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 , x =


x1

x2

...
xn

 ,

and define the product Ax:

Definition 40. The product of an m× n matrix A and an n× 1 matrix x is an m× 1 matrix
computed by adding row×column:

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn



x1

x2

...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

Notice that when you set that product equal to

b =


b1
b2
...
bm

 ,

you get the m× n system we started with.

Example 41. [
1 2 3
4 5 6

]x1

x2

x3

 =

[
x1 + 2x2 + 3x3

4x1 + 5x2 + 6x3

]
Example 42. −3 1

2 5
4 2

[2
4

]
=

−3 · 2 + 1 · 4
2 · 2 + 5 · 4
4 · 2 + 2 · 4

 =

−224
16


14



Remark 43. Notice that we can factor Ax:

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn



x1

x2

...
xn



=


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn



= x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn

 .

So the equation Ax = b can be expressed in terms of the column vectors a1, a2, . . . , an:

Ax = x1a1 + x2a2 + · · ·+ xnan = b.

Example 44. We can write the system {
2x1 + 3x2 − 2x3 = 5
5x1 − 4x2 + 2x3 = 6

as [
2 3 −2
5 −4 2

]x1

x2

x3

 =

[
5
6

]
[
2x1 + 3x2 − 2x3

5x1 − 4x2 + 2x3

]
=

[
5
6

]
x1

[
2
5

]
+ x2

[
3
−4

]
+ x3

[
−2
2

]
=

[
5
6

]
.

Definition 45. If v1, v2, . . . , vn are vectors and α1, α2, . . . , αn are scalars, then a
linear combination of v1, . . . , vn is a sum

α1v1 + α2v2 + · · ·+ αnvn.

Example 46. This definition means that solving an m×n system Ax = b is finding n scalars x1, x2, . . . , xn

such that b is written as a linear combination of the columns of A and the scalars x1, . . . , xn. For instance,
recalling Example 44, see that

2

[
2
5

]
+ 3

[
3
−4

]
+ 4

[
−2
2

]
?
=

[
5
6

]
[

4 + 9− 8
10− 12 + 8

]
?
=

[
5
6

]
[
5
6

]
✓
=

[
5
6

]
.

This means that the system in Example 44 is consistent, and a solution is

x =

23
4

 .
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In fact, this always works:

Theorem 47. Ax = b is consistent, i.e., you can find a solution x, if and only if you can write b as a linear
combination of the column vectors of A.

Proof. Remark 43.

Now we want to upgrade matrix multiplication from Ax to AB where B might not be a column vector
anymore. The trick is to use our definition of Ax from Definition 40 on each column of B one at a time.

Definition 48. The product of an m× n matrix A and an n× r matrix B is an m× r matrix
computed by working one column at a time on B:

AB = A
[
b1 b2 · · · bn

]
=
[
Ab1 Ab2 · · · Abn

]
.

Remark 49. Notice that the number of columns of A, n, has the match the number of rows of B, and that
the output has the same number of rows as A, m, and columns as B, r.

m×n

A
n×r

B =
m×r

AB .

Example 50. Let

A =

3 −2
2 4
1 −3

 , B =

[
−2 1 3
4 1 6

]
.

We get

AB =
[
Ab1 Ab2 Ab3

]
=

3 −2
2 4
1 −3

[−2
4

] 3 −2
2 4
1 −3

[1
1

] 3 −2
2 4
1 −3

[3
6

]
=

3(−2)− 2(4) 3(1)− 2(1) 3(3)− 2(6)
2(−2) + 4(4) 2(1) + 4(1) 2(3) + 4(6)
1(−2)− 3(4) 1(1)− 3(1) 1(3)− 3(6)


=

−14 1 −3
12 6 30
−14 −2 −15

 .

Example 51. Check this shit out:

BA =

[−2 1 3
4 1 6

]32
1

 [
−2 1 3
4 1 6

]−24
−3


=

[
−2(3) + 1(2) + 3(1) −2(−2) + 1(4) + 3(−3)
4(3) + 1(2) + 6(1) 4(−2) + 1(4) + 6(−3)

]
=

[
−1 −1
20 −22

]
.

So AB ̸= BA – they aren’t even the same size! In fact, it gets worse:

Example 52. Let

A =

[
3 4
1 2

]
, B =

1 2
4 5
3 6

 .
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Now, we can’t even multiply A times B, because A is a 2 × 2 matrix and B is a 3 × 2, and the number of
columns of A, 2, does not equal the number of rows of B, 3.

2×2

A
3×2

B /

But, we can do BA.

3×2

B
2×2

A =
3×2

BA ,

We get

BA =

1 2
4 5
3 6

[3 4
1 2

]

=

1(3) + 2(1) 1(4) + 2(2)
4(3) + 5(1) 4(4) + 5(2)
3(3) + 6(1) 3(4) + 6(2)


=

 5 8
17 26
15 24

 .

Even in the best case scenario where they’re the same size, you can’t guarantee AB is BA:

Example 53. Let

A =

[
1 1
0 0

]
, B =

[
1 1
2 2

]
.

We compute:

AB =

[
1 1
0 0

] [
1 1
2 2

]
=

[
1(1) + 1(2) 1(1) + 1(2)
0(1) + 0(2) 0(1) + 0(2)

]
=

[
3 3
0 0

]
BA =

[
1 1
2 2

] [
1 1
0 0

]
=

[
1(1) + 1(0) 1(1) + 1(0)
2(1) + 2(0) 2(1) + 2(0)

]
=

[
1 1
2 2

]
.

And clearly AB ̸= BA.

Definition 54. Given an m× n matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 ,

define the transpose of A to be the n×m matrix AT that swaps rows with columns:

AT =


a11 a21 · · · am1

a12 a22 · · · am2

...
...

a1n a2n · · · amn

 .
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Example 55.

A =

[
1 2 3
4 5 6

]
, AT =

1 4
2 5
3 6

 .

B =

−3 2 1
4 3 2
1 2 5

 , BT =

−3 4 1
2 3 2
1 2 5

 .

C =

[
1 2
2 3

]
, CT =

[
1 2
2 3

]
.

Definition 56. When a n × n square matrix A is equal to its transpose (A = AT ) we say A is
symmetric.

Example 57. Some symmetric matrices are C from Example 55 and

[
1 0
0 −4

]
,

2 3 4
3 1 5
4 5 3

 ,

0 1 2
1 1 −2
2 −2 −3

 .

Homework 3. §1.3: 2ab, 4b, 9, 11, 12

Day 04 of 24 – §1.4 Matrix algebra

So, we can add, subtract, multiply, and scale matrices, but multiplication is not commutative; AB ̸= BA.
What all can we do?

Proposition 58. Let A, B, and C be matrices. Let α and β be scalars. The following are true, if they are
defined:

1. A+B = B +A.
2. (A+B) + C = A+ (B + C). Write A+B + C.
3. (AB)C = A(BC). Write ABC.
4. A(B + C) = AB +AC.
5. (A+B)C = AC +BC.
6. (αβ)A = α(βA).
7. α(AB) = (αA)B = A(αB).
8. (α+ β)A = αA+ βA.
9. α(A+B) = αA+ αB.

Example 59. If

A =

[
1 2
3 4

]
, B =

[
2 1
−3 2

]
, C =

[
1 0
2 1

]
,

18



confirm that A(B + C) = AB +AC.

A(B + C) =

[
1 2
3 4

]([
2 1
−3 2

]
+

[
1 0
2 1

])
=

[
1 2
3 4

] [
3 1
−1 3

]
=

[
1(3) + 2(−1) 1(1) + 2(3)
3(3) + 4(−1) 3(1) + 4(3)

]
=

[
1 7
5 15

]
.

AB +AC =

[
1 2
3 4

] [
2 1
−3 2

]
+

[
1 2
3 4

] [
1 0
2 1

]
=

[
1(2) + 2(−3) 1(1) + 2(2)
3(2) + 4(−3) 3(1) + 4(2)

]
+

[
1(1) + 2(2) 1(0) + 2(1)
3(1) + 4(2) 3(0) + 4(1)

]
=

[
−4 5
−6 11

]
+

[
5 2
11 4

]
=

[
1 7
5 15

]
.

Definition 60. Given a matrix A and k ∈ N, define Ak to be

Ak = AA · · ·A︸ ︷︷ ︸
k times

Example 61. Let

A =

[
1 1
1 1

]
.

We calculate

A2 = AA =

[
1 1
1 1

] [
1 1
1 1

]
=

[
1(1) + 1(1) 1(1) + 1(1)
1(1) + 1(1) 1(1) + 1(1)

]
=

[
2 2
2 2

]
.

A3 = AAA = AA2 =

[
1 1
1 1

] [
2 2
2 2

]
=

[
1(2) + 1(2) 1(2) + 1(2)
1(2) + 1(2) 1(2) + 1(2)

]
=

[
4 4
4 4

]
.

A4 = AAAA = AA3 =

[
1 1
1 1

] [
4 4
4 4

]
=

[
1(4) + 1(4) 1(4) + 1(4)
1(4) + 1(4) 1(4) + 1(4)

]
=

[
8 8
8 8

]
.

In general, for any power k ∈ N,

Ak =

[
2k−1 2k−1

2k−1 2k−1

]
.

Remark 62. In the same way that a+ 0 = 0+ a = a for any a, it’s easy to see that A+ 0 = 0+A = A for
any matrix A, where 0 is the matrix with all entries 0. Is there an analogous matrix that corresponds to the
multiplicative identity 1? That is, since 1a = a1 = a, is there a matrix where, when you multiply by it, the
output doesn’t change? Let’s call that matrix I and we want

AI = IA = A.

Notice that I has to be square and the same size as A, since we’re swapping order of matrix multiplication:

n×n

A
n×n

I =
n×n

I
n×n

A =
n×n

A .
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Definition 63. The n× n identity matrix I is

I =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1


.

It has 1s on the diagonal and 0s everywhere else.

Example 64. We can check:3 4 1
2 6 3
0 1 8

1 0 0
0 1 0
0 0 1

 =

3(1) + 4(0) + 1(0) 3(0) + 4(1) + 1(0) 3(0) + 4(0) + 1(1)
2(1) + 6(0) + 3(0) 2(0) + 6(1) + 3(0) 2(0) + 6(0) + 3(1)
0(1) + 1(0) + 8(0) 0(0) + 1(1) + 8(0) 0(0) + 1(0) + 8(1)

 =

3 4 1
2 6 3
0 1 8

 .

1 0 0
0 1 0
0 0 1

3 4 1
2 6 3
0 1 8

 =

1(3) + 0(2) + 0(0) 1(4) + 0(6) + 0(1) 1(1) + 0(3) + 0(8)
0(3) + 1(2) + 0(0) 0(4) + 1(6) + 0(1) 0(1) + 1(3) + 0(8)
0(3) + 0(2) + 1(0) 0(4) + 0(6) + 1(1) 0(1) + 0(3) + 1(8)

 =

3 4 1
2 6 3
0 1 8

 .

Example 65. In complete generality for 2× 2s:[
a b
c d

] [
1 0
0 1

]
=

[
a(1) + b(0) a(0) + b(1)
c(1) + d(0) c(0) + d(1)

]
=

[
a b
c d

]
.[

1 0
0 1

] [
a b
c d

]
=

[
1(a) + 0(c) 1(b) + 0(d)
0(a) + 1(c) 0(b) + 1(d)

]
=

[
a b
c d

]
.

Remark 66. Now, every a ̸= 0 has a multiplicative inverse. It’s a number b where ab = 1. It’s easy to find:

ab = 1

b =
1

a
.

So the multiplicative inverse of a is 1/a. Notice that a ̸= 0, or else you’re dividing by 0!
Is there a multiplicative inverse for matrices? That is, if you start with A, is there a matrix B where

AB = I?

Definition 67. An n×n matrix A is nonsingular / invertible if it has an inverse A−1; i.e., there

is a matrix A−1 such that

AA−1 = A−1A = I.

We say A is singular / not invertible if it doesn’t have an inverse.

Remark 68. This doesn’t yet answer our question; it’s just new language. Which matrices are nonsingular?

Example 69. We can confirm that if

A =

[
2 4
3 1

]
,

then A is invertible and

A−1 =

−1
10

2
5

3
10

−1
5

 ,
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because

AA−1 =

[
2 4
3 1

]−1
10

2
5

3
10

−1
5

 =

2 (−1
10

)
+ 4

(
3
10

)
2
(
2
5

)
+ 4

(−1
5

)
3
(−1
10

)
+ 1

(
3
10

)
3
(
2
5

)
+ 1

(−1
5

)
 =

 −1
5 + 6

5
4
5 −

4
5

−3
10 + 3

10
6
5 −

1
5

 =

[
1 0
0 1

]
.

A−1A =

−1
10

2
5

3
10

−1
5

[2 4
3 1

]
=

−1
10 (2) +

2
5 (3)

−1
10 (4) +

2
5 (1)

3
10 (2)−

1
5 (3)

3
10 (4)−

1
5 (1)

 =

−1
5 + 6

5
−2
5 + 2

5

3
5 −

3
5

6
5 −

1
5

 =

[
1 0
0 1

]
.

Example 70. The matrix

A =

[
1 0
0 0

]
is not invertible. To see this, suppose we multiply A by anything :[

1 0
0 0

] [
a b
c d

]
=

[
1(a) + 0(c) 1(b) + 0(d)
0(a) + 0(c) 0(b) + 0(d)

]
=

[
a b
0 0

]
.

No matter what, that can’t be

I =

[
1 0
0 1

]
because of the 0 in row 2, column 2.

Remark 71. How do we know if a matrix is nonsingular, besides just being handed the inverse? That’s an
important question. We’ll answer it later, but for now, let’s get comfortable with inverses:

Theorem 72. If A and B are nonsingular n× n matrices, then so is AB, and in fact, we know the inverse
explicitly:

(AB)−1 = B−1A−1.

In general, if we have a whole bunch of nonsingular n × n matrices A1, A2, . . . , Ak, then so is A1A2 · · ·Ak

and

(A1A2 · · ·Ak)
−1 = A−1

k · · ·A
−1
2 A−1

1 .

Proof. Let’s prove the claim for just two matrices A and B; the second claim is an “induction argument.”
We can just check if the thing we claim is (AB)−1 actually gets us I when we multiply:

AB(AB)−1 = ABB−1A−1 = AIA−1 = AA−1 = I. ✓

(AB)−1AB = B−1A−1AB = B−1IB = B−1B = I. ✓

Remark 73. Now, here’s an answer for when 2× 2s are nonsingular. If

A =

[
a b
c d

]
then A is nonsingular if ad− bc ̸= 0 and the inverse is

A−1 =
1

ad− bc

[
d −b
−c a

]
.
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To check, see that

AA−1 =

[
a b
c d

](
1

ad− bc

[
d −b
−c a

])
=

1

ad− bc

[
a(d) + b(−c) a(−b) + b(a)
c(d) + d(−c) c(−b) + d(a)

]
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
.

A−1A =
1

ad− bc

[
d −b
−c a

] [
a b
c d

]
=

1

ad− bc

[
d(a)− b(c) d(b)− b(d)
−c(a) + a(c) −c(b) + a(d)

]
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
.

Note that this is only a partial answer – there are matrices other than 2 × 2s! We will see a bigger picture
later.

Proposition 74. Recall the transpose matrix AT . The following are true:
1. (AT )T = A.
2. (αA)T = αAT .
3. (A+B)T = AT +BT .
4. (AB)T = BTAT .

Remark 75. Notice that Proposition 74 #4 looks similar to the rule for inverses in Theorem 72. Careful
– these are separate concepts. Of course, they have to be, because every matrix has a transpose, but only
nonsingular (and thus square!) matrices even have an inverse.

Example 76. Let

A =

[
1 2
3 3

]
, B =

[
1 0
2 1

]
.

Checking Proposition 74 #4:

(AB)T =

([
1 2
3 3

] [
1 0
2 1

])T

=

[
1(1) + 2(2) 1(0) + 2(1)
3(1) + 3(2) 3(0) + 3(1)

]T
=

[
5 2
9 3

]T
=

[
5 9
2 3

]
.

BTAT =

[
1 0
2 1

]T [
1 2
3 3

]T
=

[
1 2
0 1

] [
1 3
2 3

]
=

[
1(1) + 2(2) 1(3) + 2(3)
0(1) + 1(2) 0(3) + 1(3)

]
=

[
5 9
2 3

]
.

Homework 4. §1.4: 3, 4, 10, 16
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Day 05 of 24 – §1.5 Elementary matrices

Remark 77. We know how to solve an m× n system Ax = b via row operations, but we’d like to solve it
via matrix multiplication, because that’s analogous to how you solve ax = b:

ax = b

a−1ax = a−1b

x = a−1b.

This is näıvely optimistic for matrices, because we know that for Ax = b, there need not exist A−1. So what
we’ll do is multiply by nonsingular m × m matrices, even if A is singular. This gives equivalent systems,
because if x solves

Ax = b,

then the same x clearly solves

MAx = Mb,

but the reverse is also true because we can multiply by M−1:

M−1MAx = M−1Mb

Ax = b.

So what nonsingular m ×m Ms should we use? They will be matrices that make the system progressively
simpler:

Definition 78. An elementary matrix is an m×m matrix E which is exactly one row operation
away from I. There are three kinds:

I. Swap two rows of I.
II. Multiply (or divide) a row of I by a scalar.
III. Add (or subtract) one row of I with another.
Also note that elementary matrices are nonsingular, and the inverse is of the same kind (check!).

Example 79. For example,

E =

0 1 0
1 0 0
0 0 1

 , E′ =

1 0 0
0 1 0
0 0 3

 , E′′ =

1 0 1
0 1 0
0 0 1


are type I., II., and III., respectively.

Remark 80. The notation is not a coincidence. Look at what multiplying by elementary matrices does:0 1 0
1 0 0
0 0 1

a b c
d e f
g h i

 =

0(a) + 1(d) + 0(g) 0(b) + 1(e) + 0(h) 0(c) + 1(f) + 0(i)
1(a) + 0(d) + 0(g) 1(b) + 0(e) + 0(h) 1(c) + 0(f) + 0(i)
0(a) + 0(d) + 1(g) 0(b) + 0(e) + 1(h) 0(c) + 0(f) + 1(i)


=

d e f
a b c
g h i

 .

Multiplying by E swapped R1 and R2. That’s a type I. row operation.1 0 0
0 1 0
0 0 3

a b c
d e f
g h i

 =

1(a) + 0(d) + 0(g) 1(b) + 0(e) + 0(h) 1(c) + 0(f) + 0(i)
0(a) + 1(d) + 0(g) 0(b) + 1(e) + 0(h) 0(c) + 1(f) + 0(i)
0(a) + 0(d) + 3(g) 0(b) + 0(e) + 3(h) 0(c) + 0(f) + 3(i)


=

 a b c
d e f
3g 3h 3i

 .
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Multiplying by E′ scaled 3R3. That’s a type II. row operation.1 0 1
0 1 0
0 0 1

a b c
d e f
g h i

 =

1(a) + 0(d) + 1(g) 1(b) + 0(e) + 1(h) 1(c) + 0(f) + 1(i)
0(a) + 1(d) + 0(g) 0(b) + 1(e) + 0(h) 0(c) + 1(f) + 0(i)
0(a) + 0(d) + 1(g) 0(b) + 0(e) + 1(h) 0(c) + 0(f) + 1(i)


=

a+ g b+ h c+ i
d e f
g h i

 .

Multiplying by E′′ added R1 +R3. That’s a type III. row operation.

Definition 81. A matrix A is row equivalent to B if

B = Ek · · ·E2E1A

where E1, E2, . . . , Ek are elementary matrices.

Since elementary matrices correspond to elementary row operations, we have:

Theorem 82. Let A be an n× n matrix. The following are equivalent.
1. A is row equivalent to I.
2. A is nonsingular.
3. The homogeneous system Ax = 0 has only the trivial solution x = 0.

Proof. We prove 1 ⇒ 2, 2 ⇒ 3, and 3 ⇒ 1.
1 ⇒ 2: If A is row equivalent to I, then

I = Ek · · ·E2E1A,

or equivalently

E−1
1 E−1

2 · · ·E
−1
k = A.

So we claim Ek · · ·E2E1 = A−1. To check:

A−1A = Ek · · ·E2E1E
−1
1 E−1

2 · · ·E
−1
k = I. ✓

AA−1 = E−1
1 E−1

2 · · ·E
−1
k Ek · · ·E2E1 = I. ✓

So A is nonsingular, and we know its inverse.
2 ⇒ 3: If A is nonsingular, then there is an A−1. Suppose we have a solution x of Ax = 0. Then:

x = A−1Ax = A−10 = 0,

so x had to be 0 – that’s the only solution.
3 ⇒ 1: We need to show A is row equivalent to I. A is certainly row equivalent to its reduced row

echelon form. But if that’s not I, then A must have a free variable, which is impossible since Ax = 0 has
one solution, not infinitely many. Thus A is row equivalent to I.

We can use this to solve nonhomogeneous systems too:

Corollary 83. The n× n system Ax = b has a unique solution if and only if A is nonsingular.

Proof. One direction is easy: if A is nonsingular, then

Ax = b

A−1Ax = A−1b

x = A−1b.
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So x can only be one thing, A−1b.
For the other direction, if Ax = b has a unique solution x, look what happens if A were singular: By

Theorem 82, Ax = 0 would have a solution that isn’t 0. Call it y. But then

A(x+ y) = Ax+Ay = b+ 0 = b,

so x + y is another solution of the system, but we already said that we have only one solution x. This
contradiction means that A couldn’t be singular.

Remark 84. Elementary matrices give us a way to calculate the inverse of a nonsingular matrix. By
Theorem 82, we can calcuate A−1 by starting at I and using the same elementary matrices that take us
from A to I. The idea is to write an augmented matrix [A | I], then do the row operations that take the left
A to I. This then forces the right I to go to A−1.

Example 85. Find A−1 if

A =

[
1 4
−1 −2

]
.

We calculate [A | I] ∼ [I | A−1], giving us A−1.[
1 4 1 0
−1 −2 0 1

]
R1+R2∼

[
1 4 1 0
0 2 1 1

]
R1−2R2∼

[
1 0 −1 −2
0 2 1 1

]
1
2R2∼

[
1 0 −1 −2
0 1 1

2
1
2

]
.

Therefore,

A−1 =

−1 −2

1
2

1
2

 .

To check this, you can do two things: just multiply AA−1 and A−1A and see that you get I, or use
Remark 73, which says what the inverse of a 2× 2 is:

A−1 =
1

ad− bc

[
d −b
−c a

]
=

1

1(−2)− 4(−1)

[
−2 −4
1 1

]
=

1

2

[
−2 −4
1 1

]
=

−1 −2

1
2

1
2

 . ✓

Example 86. We can use Example 85 to factor A and A−1 in terms of elementary matrices:

I =

1
2R2[
1 0
0 1

2

] R1−2R2[
1 −2
0 1

] R1+R2[
1 0
1 1

]
A,

so

A−1 =

[
1 0
0 1

2

] [
1 −2
0 1

] [
1 0
1 1

]
A =

([
1 0
0 1

2

] [
1 −2
0 1

] [
1 0
1 1

])−1

=

[
1 0
1 1

]−1 [
1 −2
0 1

]−1 [
1 0
0 1

2

]−1

=

[
1 0
−1 1

] [
1 2
0 1

] [
1 0
0 2

]
Example 87. If we want to find the solution to the system{

x1 + 4x2 = 3
−x1 − 2x2 = 1[
1 4
−1 −2

] [
x1

x2

]
=

[
3
1

]
,
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we can, because we know the inverse from Example 85:−1 −2

1
2

1
2

[ 1 4
−1 −2

] [
x1

x2

]
=

−1 −2

1
2

1
2

[3
1

]
[
x1

x2

]
=

−1(3)− 2(1)

1
2 (3) +

1
2 (1)


=

[
−5
2

]
.

Homework 5. §1.5: 10ef, 11, 12ab

Day 06 of 24 – §2.1 The determinant of a matrix

Since nonsingular matrices are so important, we want to develop more tests to check if a given matrix is
nonsingular. Let’s give a few examples:

Example 88. A 1 × 1 matrix is just [a]. This is the same as just the number a, and so [a] is invertible if
and only if a is. That means a ̸= 0.

Example 89. What about 2× 2 matrices? We saw in Remark 73 that if

A =

[
a b
c d

]
,

then

A−1 =
1

ad− bc

[
d −b
−c a

]
.

That’s only defined if ad− bc ̸= 0.

Remark 90. So there appears to be a scalar, a in the case of 1× 1, ad− bc in the case of 2× 2, which tells
you your matrix is nonsingular when it is not 0. What about 3× 3 and up?

Example 91. Let’s try to work out the scalar for 3× 3 explicitly. A matrix is nonsingular if we can do row
operations to get to I (Theorem 82), so what does that look like?

a b c
d e f
g h i

 R2− d
aR1∼


a b c

0 e− bd
a f − cd

a

g h i

 R3− g
aR1∼


a b c

0 e− bd
a f − cd

a

0 h− bg
a i− cg

a

 =


a b c

0 ae−bd
a

af−cd
a

0 ah−bg
a

ai−cg
a

 .

To do those steps, we must assume a ̸= 0.
Now we’ve got a smaller block:  ae−bd

a
af−cd

a

ah−bg
a

ai−cg
a
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and that block needs to get to I. But it’s a 2× 2, and we know what’s required for a 2× 2:

0 ̸=
(
ae− bd

a

)(
ai− cg

a

)
−
(
af − cd

a

)(
ah− bg

a

)
=

a2ei− aceg − abdi+ bcdg − (a2fh− abfg − acdh+ bcdg)

a2

=
a2ei− aceg − abdi− a2fh+ abfg + acdh

a2

=
aei− ceg − bdi− afh+ bfg + cdh

a
.

Dividing by a won’t make something 0 unless it already was, so really we just need the numerator:

aei− ceg − bdi− afh+ bfg + cdh ̸= 0. (∗)

Now, bear in mind we had to assume a ̸= 0. But that’s not always the case. If a = 0, then we have three
possibilities to consider:

1. d and g are also 0.
2. d ̸= 0.
3. g ̸= 0.
#1 means we have 0 b c

0 e f
0 h i


which has to be singular. Notice that plugging in a = d = g = 0 to (∗) gives you 0, which is promising
because we want a number which is 0 when you’re singular.

For #2, by swapping row 1 and 2, you get d e f
0 b c
g h i

 ,

but now you know the top left is nonzero, so we have, by the same arithmetic as before:

∼


d e f

0 b c

0 dh−eg
d

di−fg
d



b

(
di− fg

d

)
− c

(
dh− eg

d

)
=

bdi− bfg − cdh+ ceg

d
,

so

bdi− bfg − cdh+ ceg ̸= 0. (∗∗)

Notice (∗∗) is the same thing you’d get if you plugged a = 0 into (∗), but off by −1. Still, multiplying by
−1 doesn’t change if something is 0 or not.

The exact same argument as #2 works for #3, but we’ll skip for brevity. If you check this, note that the
row swap again introduces a −1 compared to (∗). Regardless, in all three cases, (∗) is the formula. It’s 0 if
and only if your 3× 3 is singular.

Remark 92. How might you do this for even bigger matrices? Notice that we want from 2× 2 to 3× 3 by
doing some row reductions and getting to a smaller block matrix. That’s the idea. We get to larger n × n
matrices by reducing the calculation to smaller (n− 1)× (n− 1) matrices.
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Definition 93. The determinant, detA, of an n× n matrix A is

det[a] = a

det

[
a b
c d

]
= ad− bc

det

a b c
d e f
g h i

 = adet

× × ×
× e f
× h i

− bdet

× × ×
d × f
g × i

+ cdet

× × ×
d e ×
g h ×


= a(ei− fh)− b(di− fg) + c(dh− eg)

= aei− afh− bdi+ bfg + cdh− ceg. (∗)

In general, for an n× n:

det


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
an1 an2 · · · ann

 = a11 det


× × · · · ×
× a22 · · · a2n
...

...
× an2 · · · ann

− a12 det


× × · · · ×
a21 × · · · a2n
...

...
an1 × · · · ann

+ · · ·+ (−1)n+1ann det


× × · · · ×
a21 a22 · · · ×
...

...
an1 an2 · · · ×

.

In fact, this worked for 2× 2s too:

det

[
a b
c d

]
= a det

[
× ×
× d

]
− b

[
× ×
c ×

]
= ad− bc.

We call deleting the ith row and jth column and calculating the determinant of that smaller block
the minor, detMij . We say we have a cofactor Aij when you keep track of the ±1; i.e., write

Aij = (−1)i+j detMij . Thus the determinant is the cofactor expansion

detA = a11A11 + a12A12 + · · ·+ a1nA1n

= a11 detM11 − a12 detM12 + · · ·+ (−1)1+n detM1n.

Proposition 94. You don’t have to do a cofactor expansion along the first row. You can do a cofactor
expansion along any row or any column.

Example 95. Calculate

det


0 2 3 0
0 4 5 0
0 1 0 3
2 0 1 3

 .

Since Proposition 94 says we can use any row/column, let’s use the one with the most 0s:

det


0 2 3 0
0 4 5 0
0 1 0 3
2 0 1 3

 = 0det

4 5 0
1 0 3
0 1 3

− 0 det

2 3 0
1 0 3
0 1 3

+ 0det

2 3 0
4 5 0
0 1 3

− 2 det

2 3 0
4 5 0
1 0 3


= −2

(
0 det

[
4 5
1 0

]
− 0 det

[
2 3
1 0

]
+ 3det

[
2 3
4 5

])
= −2

(
3
(
2(5)− 3(4)

))
= −2(3)(−2)
= 12.
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Remark 96. We know that detA ̸= 0 is equivalent to A is nonsingular when A is 1× 1, 2× 2, and 3× 3.
Is it always equivalent? Yes, but TBD (Theorem 106).

Proposition 97. det(A) = det(AT ).

Example 98.

det

[
1 2
3 4

]
= 1(4)− 2(3) = −2.

det

[
1 2
3 4

]T
= det

[
1 3
2 4

]
= 1(4)− 3(2) = −2. ✓

Proposition 99. If A is triangular (upper or lower), then det(A) is the product of the diagonal.

Example 100.

det

1 0 0
2 3 0
4 5 6

 = 1det

[
3 0
5 6

]
− 0 det

[
2 0
4 6

]
+ 0det

[
2 3
4 5

]
= 3(6)− 0(5)

= 18.

Product of the diagonal: 1 · 3 · 6 = 18. ✓

Proposition 101.
1. If A has a row/column of 0s, then detA = 0.
2. If A has two identical rows/columns, then detA = 0.

Homework 6. §2.1: 2, 3, 5, 6

Day 07 of 24 – §2.2 Properties of determinants

To understand determinants better, let’s see what row operations do to the determinant of a matrix.

Example 102. Type I.: swapping two rows. Let’s see what happens with 2× 2 and 3× 3:

det

[
a b
c d

]
= ad− bc.

det

[
c d
a b

]
= cb− da

= −(ad− bc)

= −det

[
a b
c d

]
.

det

a b c
d e f
g h i

 = a det

[
e f
h i

]
− bdet

[
d f
g i

]
+ cdet

[
d e
g h

]
.

det

a b c
g h i
d e f

 = a det

[
h i
e f

]
− bdet

[
g i
d f

]
+ cdet

[
g h
d e

]

= −a det
[
e f
h i

]
+ bdet

[
d f
g i

]
− cdet

[
d e
g h

]

= −det

a b c
g h i
d e f

 .
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You can use this idea to work your way up to any n× n matrix. Swapping two rows always just introduces
a minus sign. (We saw this already in Example 91!)

Let E be the elementary matrix that swaps rows i and j. Swapping two rows of A is the same as
multiplying EA. Notice that

detE = − det I = − (1 · 1 · · · 1)︸ ︷︷ ︸
Proposition 99

= −1.

So in this case

det(EA) = −detA = detE detA.

But be careful! It is not yet a given that detAB = detAdetB. So we had to cook it up ad hoc for this
specific E.

Example 103. Type II.: scaling a row by α. If we scale up the ith row, and then do a cofactor expansion
on that same row:

det



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
αai1 αai2 · · · αain
...

...
an1 an2 · · · ann


= ±αai1 det



× a12 · · · a1n
× a22 · · · a2n
...

...
× × · · · ×
...

...
× an2 · · · ann


∓ αai2 det



a11 × · · · a1n
a21 × · · · a2n
...

...
× × · · · ×
...

...
an1 × · · · ann


± · · · ± αain det



a11 a12 · · · ×
a21 a22 · · · ×
...

...
× × · · · ×
...

...
an1 an2 · · · ×


We can write that as

= αai1Ai1 + αai2Ai2 + · · ·+ αainAin

= α (ai1Ai1 + ai2Ai2 + · · ·+ ainAin)

= α detA.

So scaling a row by α scales the determinant by α.
Let E be the elementary matrix that scales row i by α. Notice

detE = α det I = α.

So once again

det(EA) = α detA = detE detA.

Curious. . .

Example 104. Type III.: add row i to row j. Do a cofactor expansion on row j:

det



a11 a12 · · · a1n
...

...
ai1 ai2 · · · ain
...

...
ai1 + aj1 ai2 + aj1 · · · ain + aj1

...
...

an1 an2 · · · ann


= (ai1 + aj1)Aj1 + (ai2 + aj2)Aj2 + · · ·+ (ain + ajn)Ajn

= ai1Aj1 + aj1Aj1 + ai2Aj2 + aj2Aj2 + · · ·+ ainAjn + ajnAjn

= detA+ ai1Aj1 + ai2Aj2 + · · ·+ ainAjn.
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For that mixed cofactor expansion, notice that

ai1Aj1 + ai2Aj2 + · · ·+ ainAjn = det



a11 a12 · · · a1n


...
...

ai1 ai2 · · · ain
...

...
ai1 ai2 · · · ain jth row
...

...
an1 an2 · · · ann

= 0

since the determinant is 0 when you have identical rows (Proposition 101). So ultimately adding row i to
row j did not change the determinant at all.

If E is the elementary matrix adding row i to row j, we have

detE = det I = 1

and

det(EA) = detA = detE detA.

Hmm. . .

Remark 105. For all types of elementary matrices, we saw that

det(EA) = detE detA,

and to summarize:

detE =


−1 I.

α II.

1 III.

Theorem 106. For any size n× n, A is singular if and only if detA = 0.

Proof. Using Gaussian elimination, turn A into row echelon form U :

U = Ek · · ·E2E1A.

By Remark 105,

detU = det(Ek · · ·E2E1A) = detEk · · · detE2 detE1 detA.

All the detEi are nonzero. So detA = 0 if and only if detU = 0. But since detU is in row echelon form:
• A being singular means U has a row of 0s, hence by Proposition 101, detU = 0.
• A being nonsingular means U is upper triangular with 1s on the diagonal and so by Proposition 99,
detU = 1 · 1 · · · 1 = 1 ̸= 0.

Remark 107. Something to point out is that calculating detA is therefore easy if you can reduce to a
triangular matrix U , because then

detA =
detU

detEk · · · detE2 detE1
,

and Remark 105 tells us how to calculate all the detEi and Proposition 99 tells us how to calculate U
(multiply the diagonal).
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Example 108. What is

det

2 1 3
4 2 1
6 −3 4

?
We calculate 2 1 3

4 2 1
6 −3 4

 R2−2R1∼

2 1 3
0 0 −5
6 −3 4

 III.

R3−3R1∼

2 1 3
0 0 −5
0 −6 −5

 III.

∼

2 1 3
0 −6 −5
0 0 −5

 I.

Thus

det

2 1 3
4 2 1
6 −3 4

 =

det

2 1 3
0 −6 −5
0 0 −5


1 · 1 · (−1)

=
2(−6)(−5)
−1

= −60.

Theorem 109. For any n× ns, not just elementaries,

det(AB) = detAdetB.

Proof. Either A is singular or it is not.
1. If A is singular, then by Theorem 106, detA = 0. Exercise: A singular ⇒ AB singular. But then

we have

det(AB)
?
= detAdetB

0
✓
= 0 · detB.

2. If A is nonsingular, then A = Ek · · ·E2E1. Thus using Remark 105 a bunch,

det(AB) = det(Ek · · ·E2E1B)

= detEk · · · detE2 detE1 detB

= det(Ek · · ·E2E1) detB

= detAdetB. ✓

Homework 7. §2.2: 1, 4, 7, 13
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Day 08 of 24 – §3.1 Vector spaces

The linear algebra we’ve done so far has just involved real numbers and tuples of real numbers, but this is
not mandatory. We’re going to develop the theory in more generality. At its core, the arithmetic we’ve been
doing has just required a few basic ideas.

Example 110. We’ve been dealing so far with Rm. Recall a vector
x1

x2

...
xm


is in correspondence with a point (x1, x2, . . . , xm). What is this correspondence? For instance, (2, 3) corre-
sponds to

x

y

[
2
3

]
(2, 3)

But the vector is the arrow, and is still the same vector even if it doesn’t begin at the origin.

x

y

[
2
3

]
(2, 3)

We know we can scale vectors, and graphically we can see:

2

[
2
3

]
=

[
4
6

]
.

−1

2

[
2
3

]
=

[
−1
−3
2

]
.

x

y

[
4
6

]

[
−1
−3
2

]

(2, 3)
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We also know we can add vectors; graphically this is:[
2
3

]
+

[
−1
1

]
=

[
1
4

]
.

x

y

[
2
3

]
[
−1
1

][
1
4

]

And here’s a visual proof that addition is commutative:

x

y

[
2
3

]
[
−1
1

]

[
−1
1

]

[
2
3

]

Example 111. Another example is matrices. In fact, Example 110 is also matrices, since a (column)
vector is m × 1. But even a general m × n matrix works. We write Rm for the m × 1 vectors, so we write
Rm×n for the m× n vectors. Here they aren’t necessarily arrows anymore, just matrices, but notice we can
still scale a matrix αA and add two matrices A+B = B +A.

Example 112. Here’s an out-there example: quadratic and smaller polynomials. Recall

f = ax2 + bx+ c.

If a = 0, we have a linear polynomial, a = b = 0 is a constant polynomial, and a = b = c = 0 is the zero
polynomial.

We can still scale:

αf = α(ax2 + bx+ c)

= αax2 + αbx+ αc,

and we can add:

f + g = (ax2 + bx+ c) + (dx2 + ex+ f)

= (a+ d)x2 + (b+ e)x+ (c+ d).

(And order doesn’t matter.)

Definition 113. Let V be a set. Suppose for every scalar α and for all v, w ∈ V , you can scale by
α or you can add v + w, and you’ll still get an element of V . That means
C1. αv ∈ V .
C2. v + w ∈ V .
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We use “C” because these conditions say that V is closed under addition and scalar multiplication;
you will not leave V if you do them.

We then call (V, · ,+) a vector space if the following additional axioms are satisfied:
A1. v + w = w + v.
A2. (v + w) + x = v + (w + x).
A3. There exists 0 ∈ V such that v + 0 = 0 + v = v.
A4. For every v, there is a −v such that v + (−v) = −v + v = 0.
A5. α(v + w) = αv + αw.
A6. (α+ β)v = αv + βv.
A7. (αβ)v = α(βv).
A8. 1v = v.

Example 114. We’ve seen in Example 110, Example 111, and Example 112 three examples of vector
spaces (although you should go back and check all the axioms are satisfied; we did not do this!). Let’s now
see what happens when axioms fail.

Let W = {(a, 1) ∈ R2} with usual addition and scalar multiplication. This is a set with elements like
(2, 1), (5, 1), etc. See that C2. fails:

(2, 1) + (5, 1) = (7, 2) ̸∈W.

Also C1. fails, and a few others. So W is not a vector space.

Example 115. Let’s consider (R, · ,max). Here, scalar multiplication is normal, but instead of + we take
the max. A lot of things do work:
C1. αa ∈ R. ✓
C2. max{a, b} ∈ R. ✓
A1. max{a, b} = max{b, a}. ✓
A2. max{max{a, b}, c} = max{a,max{b, c}} = max{a, b, c}. ✓
A3. max{a, z} = max{z, a} ?

= a? We need a number z that’s smaller than every a ∈ R. Well that’d be
−∞ ̸∈ R. So no A3. ×

Example 116. What about C[a, b] = {f : [a, b]→ R | f is continuous}? Define addition by

(f + g)(x) = f(x) + g(x)

and scalar multiplication by

(αf)(x) = αf(x).

C1. αf ∈ C[a, b]. ✓
C2. f + g ∈ C[a, b]. ✓
A1. (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x). ✓
A2. ✓
A3. 0 is the zero function. (f + 0)(x) = f(x) + 0 = f(x) = 0 + f(x) = (0 + f)(x). ✓
A4. If f is continuous, so is −f . ✓
...
Yes, C[a, b] is a vector space.

Example 117. Let Pn be the set of polynomials of degree less than n. For example, P3 is Example 112.
Just like P3, Pn for any n is a vector space.

Theorem 118. If V is a vector space, then
1. 0v = 0.
2. v + w = 0⇒ w = −v.
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3. (−1)v = −v.

Proof. Be careful!!! These are obvious for (R, · ,+), but in a random vector space, the only things we know
are C1., C2., and A1.–A8.. So while it might “feel obvious,” we have to prove 1, 2, and 3 using only those
axioms.

1. First, since 0 = 0 + 0:

0v = (0 + 0)v = 0v + 0v. (A6.)

Now, add an inverse to 0v to both sides, which must exist by A4.:

−0v + 0v = −0v + 0v + 0v

0 = 0 + 0v (A4.)

0 = 0v. (A3.)

2. If v + w = 0, add an inverse −v to both sides:

−v + v + w = −v + 0

w = −v + 0 (A4.)

w = −v. (A3.)

3. By 2, we know that for any v, the additive inverse −v is unique. So we’ve done it if we can show
that (−1)v serves the same function as −v, which means adding v and (−1)v needs to give us 0. Let’s
compute:

v + (−1)v A8.
= 1v + (−1)v A6.

= (1− 1)v = 0v
#1
= 0.

Homework 8. §3.1: 8, 9, 10, 11

Day 09 of 24 – §3.2 Subspaces

Example 119. The set

S =

{[
x
y

]
| y = 2x

}
is clearly a subset of R2. But is it more than just a set? Is it a vector space too? More precisely, is it a
vector space with the same · and + as (R2, · ,+)?

Notice that every element of S looks like [
x
2x

]
.

If we scale:

α

[
x
2x

]
=

[
αx
α2x

]
=

[
αx

2(αx)

]
which is still in S. Also [

x
2x

]
+

[
x′

2x′

]
=

[
x+ x′

2x+ 2x′

]
=

[
x+ x′

2(x+ x′)

]
which is also still in S.
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Example 120. This doesn’t work for every subset though. Consider

T =

{[
x
y

]
| y = x2

}
⊆ R2.

Scaling:

α

[
x
x2

]
=

[
αx
αx2

]
̸=
[

αx
(αx)2

]
. ×

Adding: [
x
x2

]
+

[
x′

x′2

]
=

[
x+ x′

x2 + x′2

]
̸=
[

x+ x′

(x+ x′)2

]
. ×

Definition 121. Let V be a vector space. We say that S ⊆ V is a subspace if:
0. S ̸= ∅.
1. αS ∈ S for all scalars α.
2. s+ t ∈ S for all s, t ∈ S.

#1 and #2 are just saying S is closed under the same · and + as V .

Remark 122.
1. Every subspace is in fact a vector space – you can check A1.–A8..
2. Every vector space V must have 0 by A3., and the set {0} is a subspace of V . Also every V is a

subspace of itself.
3. In Example 119, S is a subspace of R2, but in Example 120, T is not.

Example 123. Let

S =


xy
z

 | y = x

 .

0. S ̸= ∅ because
[
0 0 0

]T ∈ S. ✓

1. α
[
x x z

]T
=
[
αx αx αz

]T ∈ S. ✓

2.
[
x x z

]T
+
[
x′ x′ z′

]T
=
[
x+ x′ x+ x′ z + z′

]T ∈ S. ✓

Example 124. Let

S =

{[
x
y

]
| y = 1

}
.

0. S ̸= ∅ because
[
1 1

]T ∈ S. ✓

1. α
[
x 1

]T
=
[
αx α

]T ̸∈ S. ×
Example 125. Here are a bunch of examples of subspaces (you should check):

1. {[
a b
c d

]
| c = −b

}
⊆ R2×2.

2.

{f ∈ Pn | f(0) = 0} ⊆ Pn.

3.

Cn[a, b] =
{
f ∈ C[a, b] | f (n) exists and is continuous on [a, b]

}
⊆ C[a, b].

4. {
f ∈ C2[a, b] | f ′′(x) + f(x) = 0

}
⊆ C2[a, b].
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Definition 126. Here’s an important one, called the kernel / null space. Let A be an m × n
matrix. Let

N(A) = nul(A) = ker(A) =
{
x ∈ Rn | Ax = 0

}
⊆ Rn.

0. kerA ̸= ∅ because 0 ∈ kerA: A0 = 0. ✓
1. If Ax = 0, then A(αx) = αAx = α0 = 0. ✓
2. If Ax = 0 and Ay = 0, then A(x+ y) = Ax+Ay = 0 + 0 = 0. ✓

Example 127. Calculate the null space of

A =

[
1 1 1 0
2 1 0 1

]
.

Let’s solve Ax = 0:[
1 1 1 0 0
2 1 0 1 0

]
2R1−R2∼

[
1 1 1 0 0
0 1 2 −1 0

]
R1−R2∼

[
1 0 −1 1 0
0 1 2 −1 0

]
So we have free variables x3 and x4 and lead variables

x1 = x3 − x4

x2 = −2x3 + x4.

A general solution looks like 
α− β
−2α+ β

α
β

 = α


1
−2
1
0

+ β


−1
1
0
1

 .

Thus

nulA =

α


1
−2
1
0

+ β


−1
1
0
1

 | α, β ∈ R

 ⊆ R4.

Here is one theorem which tells us something cool about the kernel.

Theorem 128. Let Ax = b be consistent with solution x. y is also a solution if and only if y = x+ z where
z ∈ kerA.

Proof. There are two things to show:
1. If x is a solution and z ∈ kerA, then x+ z is a solution:

A(x+ z) = Ax+Az = b+ 0 = b. ✓

2. Every solution y ends up being x plus something in kerA. If we want to show y = x+ z, then we can
show y − x = z is in kerA:

A(y − x) = Ay −Ax = b− b = 0. ✓

38



Definition 129. Let v1, v2, . . . , vn ∈ V and let α1, α2, . . . , αn be scalars. A
linear combination of v1, . . . , vn is

α1v1 + α2v2 + · · ·+ αnvn.

The set of all linear combinations of v1, . . . , vn is the span

Span(v1, v2, . . . , vn).

Example 130. In Example 127,

nulA = Span




1
−2
1
0

 ,


−1
1
0
1


 .

Example 131. We write ei for the vector 

0


...
0
1 ith row
0
...
0

.

In R3, we have

e1 =

10
0

 , e2 =

01
0

 , e3 =

00
1

 .

We calculate and draw:

Span(e1) = {αe1} =


α0
0

 .

y

z

x
e1

Span(e1)

Span(e1, e2) = {αe1 + βe2} =


αβ
0

 .

y

z

x
e1

e2

Span(e1, e2)
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Span(e1, e2, e3) = {αe1 + βe2 + γe3} =


αβ
γ

 = R3.

y

z

x
e1

e2

e3

Span(e1, e2, e3)

Theorem 132. If v1, . . . , vn ∈ V , then Span(v1, . . . , vn) is a subspace of V .

Proof. An element of Span(v1, . . . , vn) looks like α1v1 + · · ·+ αnvn.
0. 0 = 0v1 + · · ·+ 0vn ∈ Span(v1, . . . , vn), so Span(v1, . . . , vn) ̸= ∅. ✓
1. β(α1v1 + · · ·+ αnvn) = (βα1)v1 + · · ·+ (βαn)vn ∈ Span(v1, . . . , vn). ✓
2. α1v1 + · · ·+ αnvn + α̃1v1 + · · ·+ α̃nvn = (α1 + α̃1)v1 + · · ·+ (αn + α̃n)vn ∈ Span(v1, . . . , vn). ✓

Definition 133. Let v1, . . . , vn ∈ V . We say that the set {v1, . . . , vn} is a spanning set for V if
Span(v1, . . . , vn) = V .

Example 134. In Example 131, Span(e1, e2, e3) = R3, so {e1, e2, e3} is a spanning set for R3. For that
matter, so is {e1, e2, e3, v, w, . . .} for any extra vectors v, w, . . ., because you can write any vectorαβ

γ

 ∈ R3

as

αe1 + βe2 + γe3 + 0v + 0w + · · · .

Example 135. We can check that

S =


11
1

 ,

11
0

 ,

10
0


is a spanning set for R3. To write any vector ab

c


as a linear combination ab

c

 = α

11
1

+ β

11
0

+ γ

10
0

 ,

by Theorem 47 we must solve the system1 1 1
1 1 0
1 0 0

αβ
γ

 =

ab
c

 . (∗)
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We know from Corollary 83 that there is a unique solution if and only if

A =

1 1 1
1 1 0
1 0 0


is nonsingular. In fact it is; by permuting rows, we can write it lower triangular:

A ∼

1 0 0
1 1 0
1 1 1


and thus detA = −(1 · 1 · 1) ̸= 0, so A is nonsingular. The solution to (∗) is found via backsubstitution:

α = c

β = b− α = b− c

γ = a− α− β = a− c− (b− c) = a− b.

Thus ab
c

 = c

11
1

+ (b− c)

11
0

+ (a− b)

10
0

 ,

so S is a spanning set for R3.

Example 136. But

S =


12
4

 ,

21
3

 ,

 4
−1
1


is not a spanning set of R3. The coefficient matrix

A =

1 2 4
2 1 −1
4 3 1


is singular;

detA = 1
(
(1)(1)− (−1)(3)

)
− 2
(
(2)(1)− (−1)(4)

)
+ 4
(
(2)(3)− (1)(4)

)
= 4− 2(6) + 4(2)

= 0.

We can check explicitly:  1 2 4 a
2 1 −1 b
4 3 1 c

 ∼ · · · ∼
 1 2 4 a

0 3 9 2a− b
0 0 0 2a− 3c+ 5b


So if 2a− 3c+ 5b ̸= 0, the system is inconsistent, meaning no solutions. Thus, many vectorsab

c

 ∈ R3

are not in Span(S); for example, 11
1

 ̸∈ SpanS,

because 2(1)− 3(1) + 5(1) = 2− 3 + 5 = 4 ̸= 0.
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Homework 9. §3.2: 1, 4ab, 5, 11

Day 10 of 24 – §3.3 Linear indepedence

Remark 137. Recall from Example 134 that the set

{e1, e2, e3, v, w, . . . , }

spans R3, but any extra vectors v, w, . . . were redundant. In fact, you could do something dumb and span
R3 with Span(R3) – the linear combination is a coefficient of 1 in front of the vector you want, and 0s
everywhere else. But we’d like to find minimal spanning sets, because that turns dealing with infinitely
many vectors in R3 into dealing with linear combinations of finitely many vectors.

Example 138. Consider

u =

−13
8

 , v =

 1
−1
2

 , w =

−23
1

 .

You can check that

u = 3v + 2w.

That means that if we want to write a linear combination of u, v, and w, we can rewrite it just in terms of
v and w:

αu+ βv + γw = α(3v + 2w) + βv + γw = (β + 3α)v + (γ + 2α)w.

Thus Span(u, v, w) = Span(v, w). But we can’t go any further; there’s no way to express v in terms of w or
w in terms of v:

αv =

 α
−α
2α

 ?
= βw =

−2β3β
β

 .

This can only happen if α = β = 0. Another way to say this is, if you set it equal to 0:

αv + βw = 0

can only happen if α and β are both 0.
So that means Span(v) ⊊ Span(v, w) (and similarly Span(w) ⊊ Span(v, w)).

Remark 139. This works more generally. If we have v1, v2, . . . , vn and you can write v1 as a linear combi-
nation of the others, then Span(v1, v2, . . . , vn) = Span(v2, . . . , vn). And writing v1 as a linear combination
of the others is the same as being able to write

c1v1 + c2v2 + · · ·+ cnvn = 0

where not every ci is 0 (because you can solve for v1).

Definition 140. We say that v1, v2, . . . , vn are linearly dependent if you can write

c1v1 + c2v2 + · · ·+ cnvn = 0

and not every ci was 0. On the other hand, we say that v1, . . . , vn are linearly independent if the
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only way to write

c1v1 + c2v2 + · · ·+ cnvn = 0

is when every ci is 0.

Example 141. In Example 138, u, v, and w are linearly dependent:

−u+ 3v + 2w = 0,

but v and w are linearly independent.

Example 142. We can understand what linear (in)dependence looks like graphically. First, an example in
R2. If x and y are linearly dependent, then

c1x+ c2y = 0

and c1, c2 aren’t both 0. If we suppose c2 ̸= 0, then

c2y = −c1x

y =
−c1
c2

x.

So in R2, linear dependence means y is a scalar multiple of x – on the same line through 0.

e1

e2
x

−c1
c2

x

And linear independence means they aren’t on the same line.

e1

e2
x

y

Example 143. In R3, two linearly independent vectors again don’t lie on the same line through 0. They
determine a plane through 0 in R3.

e2

e3

e1

x
y

43



For a third vector z, if the set {x, y, z} is linearly dependent, then z must lie in this plane.

e2

e3

e1

x
y

z

And if {x, y, z} is linearly independent, z does not lie on this plane.

e2

e3

e1

x
y

z

Example 144. Is 
11
1

 ,

11
0

 ,

10
0


linearly independent?

If it is, we have to show that

c1

11
1

+ c2

11
0

+ c3

10
0

 =

00
0


forces c1 = c2 = c3 = 0. Using Theorem 47 we must solve the system1 1 1

1 1 0
1 0 0

c1c2
c3

 =

00
0

 .

We know from Theorem 82 that there is a unique solution if and only if the coefficient matrix is nonsingular,
and in fact its determinant is −1. So there is a unique solution, which for a homogeneous system must be
the trivial solution c1 = c2 = c3 = 0.

Note: compare to Example 135!

Example 145. Is 
12
4

 ,

21
3

 ,

 4
−1
1
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linearly independent?
Again, we need

det

1 2 4
2 1 −1
4 3 1


to be nonzero, but recall from Example 136 that it is 0, so by Theorem 82 there are non-unique solutions,
which means there’s c1, c2, c3, not all 0, that solve

c1

12
4

+ c2

21
3

+ c3

 4
−1
1

 =

00
0

 .

For instance,

2

12
4

− 3

21
3

+

 4
−1
1

 =

24
8

+

−6−3
−9

+

 4
−1
1


=

00
0

 .

Theorem 146. Let v1, . . . , vn ∈ Rn. Let A =
[
v1 · · · vn

]
. The set {v1, . . . , vn} is linearly independent

if and only if A is nonsingular.

Proof. Use Theorem 47 to rewrite

c1v1 + · · ·+ cnvn = 0

as

A

c1...
cn

 = 0,

and then use Theorem 82 to get a unique solution, which must be c1 = · · · = cn = 0, if and only if A is
nonsingular.

Remark 147. Theorem 146 only works when the number of vectors, n, equals the dimension. (This
ensures A is square.) What do you do if you’re trying to find out if a smaller set is linearly independent?

You can still produce a matrix A out of the column vectors v1, . . . , vk, but it won’t be square, so sin-
gular/nonsingular doesn’t make sense. It will still represent a homogeneous system [A | 0] though, and
solutions will give you values of c1, . . . , ck that write

c1v1 + · · ·+ ckvk = 0

By Theorem 32, there will be a nontrivial solution c1, . . . , ck not all 0 if and only if you have free variables.

Example 148. Is 


1
−1
2
3

 ,


−2
3
1
−2

 ,


1
0
7
7




linearly independent?
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Form a matrix of column vectors, and row reduce:
1 −2 1 0
−1 3 0 0
2 1 7 0
3 −2 7 0

 R1+R2∼


1 −2 1 0
0 1 1 0
2 1 7 0
3 −2 7 0


R3−2R1∼


1 −2 1 0
0 1 1 0
0 5 5 0
3 −2 7 0


R4−3R1∼


1 −2 1 0
0 1 1 0
0 5 5 0
0 4 4 0



∼


1 −2 1 0
0 1 1 0
0 0 0 0
0 0 0 0

 .

Here c3 is a free variable, so the vectors must be linearly dependent.

Theorem 149. Any vector w ∈ Span(v1, . . . , vn) can be written uniquely as a linear combination

w = α1v1 + · · ·+ αnvn

if and only if {v1, . . . , vn} is linearly independent.

Proof. We’ll prove one half; see the book for the other half.
If {v1, . . . , vn} is linearly independent, then

c1v1 + · · ·+ cnvn = 0

forces c1 = · · · = cn = 0. Now suppose you write

w = α1v1 + · · ·+ αnvn

w = β1v1 + · · ·+ βnvn.

Subtract and you get

0 = (α1 − β1)v1 + · · ·+ (αn − βn)vn

but by linear independence this forces

α1 − β1 = 0 ⇒ α1 = β1

...
...

αn − βn = 0 ⇒ αn = βn,

so w’s linear combination was unique.

Homework 10. §3.3: 1, 5, 6
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Day 11 of 24 – §3.4 Basis and dimension

Definition 150. Let V be a vector space. Let v1, . . . , vn ∈ V . If
1. v1, . . . , vn are linearly independent, and
2. Span(v1, . . . , vn) = V ,

then we say {v1, . . . , vn} is a basis (pl. bases) for V .

Example 151. The “standard basis” for R3 (resp. Rn) is {e1, e2, e3} (resp. {e1, . . . , en}). But a basis is
not unique. You can check that 

11
1

 ,

01
1

 ,

20
1


or 

11
1

 ,

11
0

 ,

10
1


are also bases, because they are linearly independent and span R3. But notice that in all cases, a basis of
R3 has had 3 elements. . .

Example 152. The set {[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is a basis for R2×2.

1.

c1

[
1 0
0 0

]
+ c2

[
0 1
0 0

]
+ c3

[
0 0
1 0

]
+ c4

[
0 0
0 1

]
=

[
c1 c2
c3 c4

]
=

[
0 0
0 0

]
if and only if c1 = c2 = c3 = c4 = 0, so linear independence ✓

2.

Span

([
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

])
=

{
a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
=

[
a b
c d

]}
= R2×2 ✓

We wonder: would any basis of R2×2 have 4 elements?

Theorem 153. If Span(v1, . . . , vn) = V , then any collection w1, . . . , wm ∈ V with m > n is linearly
dependent.

Proof. Since Span(v1, . . . , vn) = V , every wi can be written

wi = ai1v1 + · · ·+ ainvn.

To check if {w1, . . . , wm} is linearly dependent, we need to write a sum

c1w1 + · · ·+ cmwm = 0
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without all of the ci being 0. But we can do this:

c1w1 + · · ·+ cmwm = 0

c1 (a11v1 + · · ·+ a1nvn) + · · ·+ cm (am1v1 + · · ·+ amnvn) = 0

(c1a11 + · · ·+ cmam1) v1 + · · ·+ (c1a1n + · · ·+ cmamn) vn = 0

The coefficients form a linear system; we need to find a nontrivial solution to show that {w1, . . . , wm} is
linearly dependent.

c1a11 + · · · + cmam1 = 0
...

...
...

c1a1n + · · · + cmamn = 0a11 · · · am1

...
...

a1n · · · amn


 c1...
cm

 =

0...
0


Since m > n, there are more columns than rows, hence more variables than equations, so by Theorem 32,
there is a nontrivial solution c1, . . . , cm not all 0. Thus

c1w1 + · · ·+ cmwm = 0

and not all ci are 0.

Corollary 154. If {v1, . . . , vn} and {w1, . . . , wm} are bases for V , then m = n.

Proof. By definition, Span(v1, . . . , vn) = V and {w1, . . . , wm} is linearly independent. So by Theorem 153,
m ≤ n.

But now just swap: Span(w1, . . . , wm) = V and {v1, . . . , vn} is linearly independent. By Theorem 153,
n ≤ m.

Thus m = n.

So all bases of a vector space are the same size!

Definition 155. If V has a basis of size n, we say the dimension of V is n, dimV = n. By fiat,
dim{0} = 0.

Theorem 156. Let dimV = n > 0. The set {v1, . . . , vn} is linearly independent if and only if it spans V .

Proof. If {v1, . . . , vn} is linearly independent, then by Theorem 153, {v1, . . . , vn, w} for any w ∈ V is not.
So

c1v1 + · · ·+ cnvn + cw = 0

and not all coefficients are 0. In fact, c ̸= 0, or else {v1, . . . , vn} would be linearly dependent. So

c1v1 + · · ·+ cnvn = −cw
−c1
c

v1 + · · ·+
−cn
c

vn = w

so w is a linear combination of {v1, . . . , vn}, hence w ∈ Span(v1, . . . , vn). But w was any vector in V , so
Span(v1, . . . , vn) = V .

On the other hand, if Span(v1, . . . , vn) = V , suppose {v1, . . . , vn} wasn’t linearly independent. One of
the vis can be written as a linear combination of the others. Eliminate it and the remaining vectors still
span V . You may need to remove more vectors, but eventually you’ll get a linearly independent spanning
set, i.e., a basis, of size k < n. But, dimV = n and Corollary 154 says that your basis must be size n. So
it was wrong to suppose {v1, . . . , vn} was linearly dependent. It must be linearly independent.
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Proposition 157. Let dimV = n > 0.
1. {v1, . . . , vk} with k < n cannot span V .
2. If {v1, . . . , vk} is linearly independent, you can add more vectors until you get a basis of V .
3. If Span(v1, . . . , vm) = V and m > n, you can remove vectors until you get a basis of V .

Homework 11. §3.4: 4, 7, 17

Day 12 of 24 – §3.5 Change of basis

Remark 158. We care about bases because they convey the (often infinite) data of a vector space into a
finite combination of basis vectors. For example, any v ∈ R2 can be expressed (uniquely, by Theorem 149)
as

v = ae1 + be2.

But remember, while bases have the same size (Corollary 154), bases are not unique, so given a different
basis {b1, b2}, you can still express v uniquely as

v = cb1 + db2.

The coefficients are likely different now.

Definition 159. Given a basis {b1, . . . , bn} and a vector v, when you write v uniquely as

v = c1b1 + · · ·+ cnbn,

then the vector of the coefficients c1...
cn


is called the coordinate vector of v.

Example 160. When R2 has basis {e1, e2}, then the coordinate vector of

v =

[
7
7

]
= 7e1 + 7e2

is [
7
7

]
.

But if R2 has basis {[
2
1

]
,

[
1
4

]}
=
{
b1, b2

}
(which you should check forms a basis!), then the coordinate vector of

v =

[
7
7

]
= 3

[
2
1

]
+

[
1
4

]
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is [
3
1

]
.

The geometric interpretation is that a basis determines your coordinate system:

x

y

e1 2e1 3e1 4e1 5e1 6e1 7e1

7e1 + e2

7e1 + 2e2

7e1 + 3e2

7e1 + 4e2

7e1 + 5e2

7e1 + 6e2

7e1 + 7e2
v

e2

x

y

b1

2b1

3b1

3b1 + b2

v

b2

Example 161. How does this work in general? If we want to express any w ∈ R2 in terms of the basis
{b1, b2} instead of {e1, e2}, or vice versa, what must we do?

1. Going from basis {b1, b2} to {e1, e2}:
Suppose you have a vector w given in coordinates {b1, b2}. So

w = c1b1 + c2b2.

We can write the coordinate vectors for b1 and b2 in terms of e1 and e2. We have

b1 =

[
2
1

]
= 2e1 + e2

b2 =

[
1
4

]
= e1 + 4e2.
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Thus

w = c1b1 + c2b2

= c1 (2e1 + e2) + c2 (e1 + 4e2)

= (2c1 + c2) e1 + (c1 + 4c2) e2.

So the coordinate vector of w with respect to {e1, e2} is

w =

[
2c1 + c2
c1 + 4c2

]
=

[
2 1
1 4

] [
c1
c2

]
.

In other words, we can write w in terms of the standard basis by multiplying its coordinate vector on
the left by the matrix whose columns are the old basis. We say that this matrix

A =

[
2 1
1 4

]
is the transition matrix from basis {b1, b2} to basis {e1, e2}.

2. Going from basis {e1, e2} to {b1, b2}:
Since the transition matrix from {b1, b2} to {e1, e2} has columns built from a basis, hence linearly
independent columns, it is nonsingular, so it has an inverse. That inverse is

A−1 =
1

8− 1

[
4 −1
−1 2

]
=

 4
7

−1
7

−1
7

2
7

 .

If w = a1e1 + a2e2 and we want to solve for w = c1b1 + c2b2, we know from part #1 that[
2 1
1 4

] [
c1
c2

]
=

[
a1
a2

]
 4

7
−1
7

−1
7

2
7

[2 1
1 4

] [
c1
c2

]
=

 4
7

−1
7

−1
7

2
7

[a1
a2

]
[
c1
c2

]
=

 4
7

−1
7

−1
7

2
7

[a1
a2

]
.

So the matrix A−1 is the transition matrix that turns a w = a1e1 + a2e2 into w = c1b1 + c2b2; it takes
us from basis {e1, e2} to basis {b1, b2}.

Example 162. We can double check Example 160 now. If v = 7e1+7e2, then we claimed the coordinates
in terms of b1 and b2 were v = 3b1 + b2. To see this: 4

7
−1
7

−1
7

2
7

[7
7

]
=

 4
7 (7)−

1
7 (7)

−1
7 (7) + 2

7 (7)


=

[
4− 1
−1 + 2

]
=

[
3
1

]
. ✓

Remark 163. What if we want to go from any basis {v1, v2} to any other basis {w1, w2}? Easy!

{v1, v2} {e1, e2} {w1, w2}

[
x
y

] [
v1 v2

] [x
y

] [
w1 w2

]−1 [
v1 v2

] [x
y

]
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Example 164. Let

{v1, v2} =
{[

5
2

]
,

[
7
3

]}
, {w1, w2} =

{[
3
2

]
,

[
1
1

]}
.

Find the transition matrix from {v1, v2} to {w1, w2}. Convert the coordinates 2v1 − 3v2 to {w1, w2}.
By Remark 163, the transition matrix is[

3 1
2 1

]−1 [
5 7
2 3

]
=

1

3− 2

[
1 −1
−2 3

] [
5 7
2 3

]
=

[
3 4
−4 −5

]
.

To convert: [
3 4
−4 −5

] [
2
−3

]
=

[
−6
7

]
,

so 2v1 − 3v2 = −6w1 + 7w2.

Remark 165. All of this works in any finite dimensional vector space, not just R2.

Example 166. Let

{v1, v2, v3} =


11
1

 ,

23
2

 ,

15
4

 .

Convert 2v1 + 3v2 − v3 into {e1, e2, e3}. Convert e1 − e2 + e3 into {v1, v2, v3}.
First, 1 2 1

1 3 5
1 2 4

 2
3
−1

 =

2 + 6− 1
2 + 9− 5
2 + 6− 4


=

76
4

 ,

so 2v1 + 3v2 − v3 = 7e1 + 6e2 + 4e3.
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Second,  1 2 1 1 0 0
1 3 5 0 1 0
1 2 4 0 0 1

 R2−R1∼

 1 2 1 1 0 0
0 1 4 −1 1 0
1 2 4 0 0 1


R3−R1∼

 1 2 1 1 0 0
0 1 4 −1 1 0
0 0 3 −1 0 1


R1−2R2∼

 1 0 −7 3 −2 0
0 1 4 −1 1 0
0 0 3 −1 0 1


1
3R3∼


1 0 −7 3 −2 0

0 1 4 −1 1 0

0 0 1 −1
3 0 1

3



R2−4R3∼


1 0 −7 3 −2 0

0 1 0 1
3 1 −4

3

0 0 1 −1
3 0 1

3



R1+7R3∼


1 0 0 2

3 −2 7
3

0 1 0 1
3 1 −4

3

0 0 1 −1
3 0 1

3

 ,

so 
2
3 −2 7

3

1
3 1 −4

3

−1
3 0 1

3


 1
−1
1

 =


2
3 + 2 + 7

3

1
3 − 1− 4

3

−1
3 − 0 + 1

3


=

 5
−2
0

 ,

and thus e1 − e2 + e3 = 5v1 − 2v2.

Homework 12. §3.5: 1, 2, 3, 7, 8

Day 13 of 24 – §3.6 Row space and column space

Definition 167. Given an m × n matrix A, the subspace of R1×n spanned by the row vectors
of A is the row space of A, row(A). The subspace of Rm spanned by the column vectors is the
column space of A, col(A).
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Example 168. Let

A =

[
1 0 0
0 1 0

]
.

Here,

rowA = Span
([
1 0 0

]
,
[
0 1 0

])
=
{
c1
[
1 0 0

]
+ c2

[
0 1 0

]}
=
{[

c1 c2 0
]}

,

a dimension 2 subspace of R1×3. Furthermore,

colA = Span

([
1
0

]
,

[
0
1

]
,

[
0
0

])
= Span

([
1
0

]
,

[
0
1

])
=

{
c1

[
1
0

]
+ c2

[
0
1

]}
=

{[
c1
c2

]}
= R2.

Proposition 169. If A is row equivalent to B, then rowA = rowB.

Definition 170. dim(row(A)) is called the rank of A, rank(A).

Example 171. If

A =

1 −2 3
2 −5 1
1 −4 −7

 ,

what is rankA?
By Proposition 169, we can find rankA by reducing to row echelon form, and finding that row space.1 −2 3

2 −5 1
1 −4 −7

 2R1−R2∼

1 −2 3
0 1 5
1 −4 −7

 R1−R2∼

1 −2 3
0 1 5
0 2 10

 ∼
1 −2 3
0 1 5
0 0 0

 .

Thus

rowA = Span
([
1 −2 3

]
,
[
0 1 5

])
,

and hence rankA = 2.

Theorem 172. An m× n system Ax = b is consistent if and only if b ∈ colA.

Proof. Theorem 47 says Ax = b is consistent if and only if b is a linear combination of the columns
a1, . . . , an, because you can rewrite

Ax = b

x1a1 + · · ·+ xnan = b.

But a linear combination of {a1, . . . , an}, by definition, lives in

Span(a1, . . . , an) = colA.
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Corollary 173. Let A ∈ Rm×n.
1. Ax = b is consistent for every b ∈ Rm if and only if colA = Rm.
2. Ax = b has at most one solution for every b ∈ Rm if and only if the column vectors of A are linearly

independent.

Proof.
1. By Theorem 172, b ∈ colA, but if that has to hold for every b ∈ Rm, then colA = Rm.
2. Ax = 0 has exactly one solution, the trivial solution x = 0, if and only if the columns of A must be

linearly independent. To show this holds for any b, not just 0, see that if y and z are two solutions of
Ax = b, then

A(y − z) = Ay −Az = b− b = 0,

so:

columns of A are linearly independent⇔ Ax = 0 has a unique solution x = 0

⇔ y − z = 0

⇔ y = z

⇔ Ax = b has at most one solution.

Corollary 174. A square matrix A ∈ Rn×n is nonsingular if and only if the column vectors form a basis
of Rn.

Now, we do THE MOST IMPORTANT THING OF YOUR LIFE:

Theorem 175 (Rank-Nullity). Let A ∈ Rm×n.

rankA+ dimnulA = n.

It’s called rank nullity because we say dimnulA is the nullity of A. In words:

The dimension of the row space︸ ︷︷ ︸
rankA

+the dimension of the null space︸ ︷︷ ︸
dimnulA

= the number of columns︸ ︷︷ ︸
n

.

Proof. Given any A, row reduce it to U . We know by Proposition 169 that rowA = rowU . We also know
that

[A | 0] ∼ [U | 0].

Suppose rankA = r. This means U will have r nonzero rows. Thus [U | 0] will have r lead variables and
n− r free variables, and the number of free variables is dimnulA. Therefore

rankA+ dimnulA = r + n− r = n.

Example 176. Confirm rank-nullity for

A =

1 2 −1 1
2 4 −3 0
1 2 1 5


by finding a basis for rowA and a basis for nulA.

We calculate the reduced row echelon form:1 2 −1 1
2 4 −3 0
1 2 1 5

 2R1−R2∼

1 2 −1 1
0 0 1 2
1 2 1 5

 R3−R1∼

1 2 −1 1
0 0 1 2
0 0 2 4

 ∼
1 2 −1 1
0 0 1 2
0 0 0 0

 R1+R2∼

1 2 0 3
0 0 1 2
0 0 0 0

 .
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Therefore

rowA = Span
([
1 2 0 3

]
,
[
0 0 1 2

])
,

so rankA = 2. Furthermore, we learn that solving [A | 0] is equivalent to

x1 + 2x2 + 3x4 = 0

x3 + 2x4 = 0,

so

x1 = −2x2 − 3x4,

x3 = −2x4.

Therefore,

nulA =



−2x2 − 3x4

x2

−2x4

x4


 =

x2


−2
1
0
0

+ x4


−3
0
−2
1


 = Span



−2
1
0
0

 ,


−3
0
−2
1


 ,

so dimnulA = 2. And yes, rankA+ dimnulA = 2 + 2 = 4 = n.

Remark 177. When A is row equivalent to B, the row spaces are the same, but the column spaces need
not be. However, we do have the same dependency relationships. In Example 176, notice that for1 2 0 3

0 0 1 2
0 0 0 0

 =
[
u1 u2 u3 u4

]
,

u1 and u3 are linearly independent, and u2 = 2u1 and u4 = 3u1 + 2u3.
The same is true for the original

A =

1 2 −1 1
2 4 −3 0
1 2 1 5

 =
[
a1 a2 a3 a4

]
;

a1 and a3 are linearly independent, and a2 = 2a1 and a4 = 3a1 + 2a3.
This fact always holds.

Theorem 178. If A ∈ Rm×n, then dim rowA = dim colA.

Note that by definition, rankA = dim rowA. This says you can calculate rank using columns, if you
want.

Proof. Row reduce A to a matrix U .

A =


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45

 ∼ U =


1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 0 1 ∗
0 0 0 0 0

 .

U will have rankA = r leading 1s, and the columns that those 1s are in will be linearly independent. Let
Û be the matrix where we delete all the columns with free variables from U . Write Â by deleting the same
columns.

Â =


a11 a12 a14
a21 a22 a24
a31 a32 a34
a41 a42 a44

 ∼ Û =


1 ∗ ∗
0 1 ∗
0 0 1
0 0 0

 .
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Now the columns of Û are linearly independent, and since Â ∼ Û , the columns of Â must also be lin-
early independent by Remark 177. But we’ve constructed Â to have r columns. Thus we’ve shown that
dim colA ≥ dim col Â = r.

We’re done if we can also show that dim colA ≤ r, because that’ll force dim colA = r, and remember:
r = rankA = dim rowA.

To show dim colA ≤ r, we just play the same game with AT :

dim colA = dim rowAT = dim col ÂT ≤ dim colAT = dim rowA = r. ✓

Finally, we round off with some examples.

Example 179. Find a basis for colA if

A =


1 −2 1 2
−1 3 2 −2
0 1 3 4
1 2 13 5

 .

We row reduce: 
1 −2 1 2
−1 3 2 −2
0 1 3 4
1 2 13 5

 R1+R2∼


1 −2 1 2
0 1 3 0
0 1 3 4
1 2 13 5


R4−R1∼


1 −2 1 2
0 1 3 0
0 1 3 4
0 4 12 3


R3−R2∼


1 −2 1 2
0 1 3 0
0 0 0 4
0 4 12 3


R4−4R2∼


1 −2 1 2
0 1 3 0
0 0 0 4
0 0 0 3



∼


1 −2 1 2
0 1 3 0
0 0 0 1
0 0 0 0

 .

The linearly independent columns come from the leading 1s. Thus a basis for colA is


1
−1
0
1

 ,


−2
3
1
2

 ,


2
−2
4
5


 .

Example 180. What is the dimension of

Span




1
2
−1
0

 ,


2
5
−3
2

 ,


2
4
−2
0

 ,


3
8
−5
4


 ⊆ R4?
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This span is the same as the column space of

A =


1 2 2 3
2 5 4 8
−1 −3 −2 −5
0 2 0 4

 ,

which row reduces to:
1 2 2 3
2 5 4 8
−1 −3 −2 −5
0 2 0 4

 R2−2R1∼


1 2 2 3
0 1 0 2
−1 −3 −2 −5
0 2 0 4

 R1+R3∼


1 2 2 3
0 1 0 2
0 −1 0 −2
0 2 0 4

 ∼

1 2 2 3
0 1 0 2
0 0 0 0
0 0 0 0

 .

There are two leading 1s and thus dim colA = 2.

Homework 13. §3.6: 1, 2, 3, 4, 5

Day 14 of 24 – §4.1 Linear transformations

We know vector spaces; we now want to know a special kind of function between vector spaces.

Definition 181. Let V and W be vector spaces. A function L : V →W is a linear transformation
if

L(αv1 + βv2) = αL(v1) + βL(v2)

for all scalars α, β and vectors v1, v2 ∈ V . In words: L respects addition and scalar multiplication. If
L : V → V , we call L a linear operator on V .

Example 182. Let L : R2 → R2 be L(v) = 3v. We check one at a time:
1. L(αv) = 3(αv) = α3v = αL(v). ✓
2. L(v + w) = 3(v + w) = 3v + 3w = L(v) + L(w). ✓
Graphically, L stretches out R2 by a factor of 3:

x

y

v1

L(v1)

v2

L(v2)

v3

L(v3)

Example 183. Let L : R2 → R2 be

L

([
a
b

])
= ae1 =

[
a
0

]
.

We check all at once:

L

(
α

[
a
b

]
+ β

[
c
d

])
= L

([
αa+ βc
αb+ βd

])
=

[
αa+ βc

0

]
= α

[
a
0

]
+ β

[
c
0

]
= αL

([
a
b

])
+ βL

([
c
d

])
.

Graphically, L takes any vector and projects it to the x-axis:
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x

y
v1

L(v1)

v2

L(v2)

Example 184. Let L : R2 → R2 be

L

([
a
b

])
=

[
−b
a

]
.

Again:

L

(
α

[
a
b

]
+ β

[
c
d

])
= L

([
αa+ βc
αb+ βd

])
=

[
−(αb+ βd)
αa+ βc

]
= α

[
−b
a

]
+ β

[
−d
c

]
= αL

([
a
b

])
+ βL

([
c
d

])
.

Graphically:

x

y
v1

L(v1)

v2

L(v2)

Example 185. What about the distance formula d : R2 → R,

d

([
x
y

])
=
√
x2 + y2?

1.

d

(
α

[
x
y

])
= d

([
αx
αy

])
=
√
(αx)2 + (αy)2

=
√
α2(x2 + y2)

= |α|
√
x2 + y2

̸= α
√
x2 + y2

= αd

([
x
y

])
. ×

Example 186. What about calculus? Let D : Pn+1 → Pn be D(f) = d
dx [f ]. Then the sum rule and

constant multiple rules tell us

D(αf + βg) =
d

dx
[αf + βg] = α

d

dx
[f ] + β

d

dx
[g] = αD(f) + βD(g). ✓

(Also, limits and integrals are linear transformations, and we need not restrict to Pn+1.)

59



Example 187. What about L : R2 → R3 defined by

L

([
x
y

])
=

 y
x

x+ y

?
1.

L

(
α

[
x
y

])
= L

([
αx
αy

])
=

 αy
αx

αx+ αy

 = α

 y
x

x+ y

 = αL

([
x
y

])
. ✓

2.

L

([
x
y

]
+

[
z
w

])
= L

([
x+ z
y + w

])

=

 y + w
x+ z

x+ z + y + w


=

 y
x

x+ y

+

 w
z

z + w


= L

([
x
y

])
+ L

([
z
w

])
. ✓

Remark 188. Hey, check this out:
Let

A =

0 1
1 0
1 1

 ,

and calculate 0 1
1 0
1 1

[x
y

]
=

0x+ 1y
1x+ 0y
1x+ 1y

 =

 y
x

x+ y

 .

So the linear transformation L in Example 187 and the A we just defined satisfy L(v) = Av. Cool.
In fact, in general, all linear transformations can be written as matrices, and in fact all matrices are linear

transformations. Wow! Let’s prove the second claim, and the first later (Theorem 196).

Theorem 189. If A ∈ Rm×n, then multiplication by A defines a linear transformation L : Rn → Rm.

Proof. Let L(v) = Av.
1. L(αv) = A(αv) = αAv = αL(v). ✓
2. L(v + w) = A(v + w) = Av +Aw = L(v) + L(w). ✓

Remark 190. If L : V →W , then it’s easy to see
1. L(0V ) = 0W .
2. L(c1v1 + · · ·+ cnvn) = c1L(v1) + · · ·+ cnL(vn).
3. L(−v) = −L(v).

Definition 191. Let L : V → W be a linear transformation. We define the kernel of L, kerL, to
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be

kerL = {v ∈ V | L(v) = 0W } ⊆ V.

It’s everything in V that gets sent to 0.

Definition 192. Let L : V →W . Let S ⊆ V . Define the image of S, L(S), to be

L(S) = {w ∈W | w = L(s) for some s ∈ S} ⊆W.

It’s everything that S maps to. We call the image of V , L(V ), the range of L, or sometimes the
image of L, imL.

Example 193. Recall L : R2 → R2 defined by

L

([
a
b

])
=

[
a
0

]
from Example 183. First,

kerL =

{[
a
b

]
∈ R2 | L

([
a
b

])
=

[
a
0

]
=

[
0
0

]}
=

{[
a
b

]
∈ R2 | a = 0

}
=

{[
0
b

]
∈ R2

}
= Span(e2) ⊆ R2.

Second,

L
(
R2
)
=

{[
x
y

]
∈ R2 | L

([
a
b

])
=

[
a
0

]
=

[
x
y

]}
=

{[
x
y

]
∈ R2 | a = x, y = 0

}
=

{[
a
0

]
∈ R2

}
= Span(e1) ⊆ R2.

Example 194. Let L : R3 → R2 be

L

xy
z

 =

[
x+ y
y + z

]
.
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The kernel is

kerL =


xy
z

 ∈ R3 | L

xy
z

 =

[
x+ y
y + z

]
=

[
0
0

]
=


xy
z

 ∈ R3 | x+ y = 0, y + z = 0


=


 z
−z
z

 ∈ R3


= Span

 1
−1
1

 ⊆ R3.

Let S = Span(e1, e3) ⊆ R3. The image of S is

L(S) =


[
a
b

]
∈ R2 | L

xy
z

 =

[
x+ y
y + z

]
=

[
a
b

]
,

xy
z

 ∈ S

 (so y = 0)

=

{[
a
b

]
∈ R2 |

[
x
z

]
=

[
a
b

]}
=

{[
x
z

]
∈ R2

}
= R2.

Notice that since S ⊆ R3 has image all of R2, this forces L(R3) = R2 as well.

Theorem 195. If L : V →W and S ⊆ V is a subspace, then
1. kerL ⊆ V is a subspace.
2. L(S) ⊆W is a subspace.

In particular, imL = L(V ) is a subspace of W .

Proof. We gotta check:
0. Is kerL ̸= ∅? Yes, by Remark 190, L(0V ) = 0W , so 0V ∈ kerL. ✓
1. If v ∈ kerL, is αv ∈ kerL? Yes: L(αv) = αL(v) = α0W = 0W . ✓
2. If v, v′ ∈ kerL, is v + v′ ∈ kerL? Yes: L(v + v′) = L(v) + L(v′) = 0W + 0W = 0W . ✓

So kerL is a subspace of V .
0. Is L(S) ̸= ∅? Yes, since 0V ∈ S, L(0V ) = 0W ∈ L(S). ✓
1. If w ∈ L(S), is αw ∈ L(S)? Yes: since w ∈ L(S), there is a v ∈ S such that L(v) = w. Since S is a

subspace, αv ∈ S, and then L(αv) = αL(v) = αw, so there is an αv ∈ S demonstrating αw ∈ L(S). ✓
2. If w,w′ ∈ L(S), is w+w′ ∈ L(S)? Yes: since w,w′ ∈ L(S), there are v, v′ ∈ S such that L(v) = w and

L(v′) = w′. Since S is a subspace, v + v′ ∈ S, and then L(v + v′) = L(v) + L(v′) = w+w′, so there is
a v + v′ ∈ S demonstrating w + w′ ∈ L(S). ✓

So L(S) is a subspace of W .

Homework 14. §4.1: 1, 5, 13, 17

Day 15 of 24 – §4.2 Matrix representations of transformations

We saw in Theorem 189 that every matrix determines a linear transformation, and we claimed the opposite
is also true: you can write every linear transformation as multiplication by a matrix. Let’s prove it!
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Theorem 196. If L : Rn → Rm, then there exists A ∈ Rm×n such that

L(v) = Av

for all v ∈ Rn.

Proof. We build A’s columns:

A =
[
a1 a2 · · · an

]
=
[
L(e1) L(e2) · · · L(en)

]
.

And then we just check. Take any v ∈ Rn and write out its standard coordinate vector:

v =


c1
c2
...
cn

 = c1e1 + c2e2 + · · ·+ cnen.

By Remark 190,

L(v) = L(c1e1 + c2e2 + · · ·+ cnen)

= c1L(e1) + c2L(e2) + · · ·+ cnL(en)

= c1a1 + c2a2 + · · ·+ cnan

= A


c1
c2
...
cn


= Av. ✓

Example 197. Recall Example 194 where L : R3 → R2 was

L

xy
z

 =

[
x+ y
y + z

]
.

To find a corresponding matrix A ∈ R2×3, we have

L

10
0

 =

[
1
0

]

L

01
0

 =

[
1
1

]

L

00
1

 =

[
0
1

]
.

Therefore,

A =

[
1 1 0
0 1 1

]
.

We can check our work:[
1 1 0
0 1 1

]xy
z

 =

[
1x+ 1y + 0z
0x+ 1y + 1z

]
=

[
x+ y
y + z

]
= L

xy
z

 . ✓
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Remark 198. In fact, it’s not just transformations L : Rn → Rm that can be turned into matrices. What
about L : V → W , for whatever V and W? It’s the same idea. We just might not have the standard basis
anymore.

Example 199. Let

L : R3 = ⟨e1, e2, e3⟩ → R2 =

〈[
1
1

]
,

[
−1
1

]〉
be defined by

L (ae1 + be2 + ce3) = a

[
1
1

]
+ (b+ c)

[
−1
1

]
.

To write the matrix A ∈ R2×3 that defines L, we plug in the basis of R3 and write the columns of A in
terms of the basis of R2:

L(e1) = 1

[
1
1

]
+ 0

[
−1
1

]
L(e2) = 0

[
1
1

]
+ 1

[
−1
1

]
L(e3) = 0

[
1
1

]
+ 1

[
−1
1

]
.

So the matrix A is

A =

[
1 0 0
0 1 1

]
.

Example 200. Let

L : R2 =

〈[
1
1

]
,

[
−1
1

]〉
→ R2 =

〈[
1
1

]
,

[
−1
1

]〉
be defined by

L

(
α

[
1
1

]
+ β

[
−1
1

])
= (α+ β)

[
1
1

]
+ 2β

[
−1
1

]
.

We get:

L

([
1
1

])
= 1

[
1
1

]
+ 0

[
−1
1

]
L

([
−1
1

])
= 1

[
1
1

]
+ 2

[
−1
1

]
,

so

A =

[
1 1
0 2

]
.

Example 201. Recall (Example 117 and Example 186) that Pn+1, polynomials of degree less than n+1,
is a vector space, and differentiation D : Pn+1 → Pn is a linear operator. Write

Pn+1 = ⟨xn, xn−1, . . . , x2, x, 1⟩
Pn = ⟨xn−1, xn−2, . . . , x2, x, 1⟩.
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We calculate the value of the basis vectors:

D(xn) = nxn−1

D(xn−1) = (n− 1)xn−2

...

D(x2) = 2x

D(x) = 1

D(1) = 0

Therefore the matrix is

A =


n 0 · · · 0 0 0
0 n− 1 · · · 0 0 0

...
...

0 0 · · · 2 0 0
0 0 · · · 0 1 0


So now check this shit out!! 

4 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 1 0




2
1
0
−1
3

 =


8
3
0
−1


and indeed,

d

dx

[
2x4 + 1x3 + 0x2 − 1x+ 3

]
= 8x3 + 3x2 + 0x− 1.

Wow! ,

Homework 15. §4.2: 1, 2, 6, 13

Day 16 of 24 – §4.3 Similarity

Remark 202. Recall that when we write the matrix A ∈ Rm×n representing a linear transformation
L : V → W , A depends on the bases {v1, . . . , vn} and {w1, . . . , wm}. But of course V and W could have
different bases. Changing bases doesn’t change L, so there should be a relationship between the matrices.

Example 203. Let L : R2 → R2,

L

([
x
y

])
=

[
2x

x+ y

]
.

The matrix with respect to {e1, e2} is

L(e1) =

[
2
1

]
L(e2) =

[
0
1

]
,

A =

[
2 0
1 1

]
. (A represents L : ⟨e1, e2⟩ → ⟨e1, e2⟩.)
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If we have a different basis {
b1, b2

}
=

{[
1
1

]
,

[
−1
1

]}
,

then we can write the two change of basis transition matrices from {e1, e2} to {b1, b2} and {b1, b2} to {e1, e2}.
The matrix from {b1, b2} to {e1, e2} is

C =

[
1 −1
1 1

]
,

so from {e1, e2} to {b1, b2} is

C−1 =
1

1 + 1

[
1 1
−1 1

]
=

 1
2

1
2

−1
2

1
2

 .

Now if we want to express L : ⟨b1, b2⟩ → ⟨b1, b2⟩, then we need to know what L(b1) and L(b2) are, in
terms of b1 and b2. We can calculate:

L
(
b1
)
= L

([
1
1

])
=

[
2 0
1 1

] [
1
1

]
=

[
2
2

]
L
(
b2
)
= L

([
−1
1

])
=

[
2 0
1 1

] [
−1
1

]
=

[
−2
0

]
.

These outputs are in terms of {e1, e2}, so to finish:

C−1L(b1) =

 1
2

1
2

−1
2

1
2

[2
2

]
=

[
2
0

]

C−1L(b2) =

 1
2

1
2

−1
2

1
2

[−2
0

]
=

[
−1
1

]
,

so thus

L(b1) = 2b1 + 0b2

L(b2) = −1b1 + 1b2,

B =

[
2 −1
0 1

]
. (B represents L : ⟨b1, b2⟩ → ⟨b1, b2⟩.)

How do we compare A and B? Notice:

⟨b1, b2⟩ ⟨b1, b2⟩

⟨e1, e2⟩ ⟨e1, e2⟩

B

C

A

C−1

B = C−1AC.

This always holds.

Proposition 204. Let L : V → V and give V two bases {v1, . . . , vn} and {ṽ1, . . . , ṽn}. Let S be the
transition matrix from {ṽ1, . . . , ṽn} to {v1, . . . , vn}. If A represents L on {v1, . . . , vn} and B represents L
on {ṽ1, . . . , ṽn}, then

B = S−1AS.
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⟨ṽ1, . . . , ṽn⟩ ⟨ṽ1, . . . , ṽn⟩

⟨v1, . . . , vn⟩ ⟨v1, . . . , vn⟩

B

S

A

S−1

Definition 205. Let A,B ∈ Rn×n. If there exists a nonsingular S ∈ Rn×n such that

B = S−1AS,

then A and B are similar.

Example 206. Let L : R3 → R3 be defined by

L

xy
z

 =

2 2 0
1 1 2
1 1 2

xy
z

 ;

this matrix represents L : ⟨e1, e2, e3⟩ → ⟨e1, e2, e3⟩. Find a matrix representing

L :

〈 1
−1
0

 ,

−21
1

 ,

11
1

〉→ 〈 1
−1
0

 ,

−21
1

 ,

11
1

〉 .

The transition matrix from the new basis to {e1, e2, e3} is

S =

 1 −2 1
−1 1 1
0 1 1

 ,
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and we can find the inverse: 1 −2 1 1 0 0
−1 1 1 0 1 0
0 1 1 0 0 1

 R1+R2∼

 1 −2 1 1 0 0
0 −1 2 1 1 0
0 1 1 0 0 1


R2+R3∼

 1 −2 1 1 0 0
0 −1 2 1 1 0
0 0 3 1 1 1


−R2∼

 1 −2 1 1 0 0
0 1 −2 −1 −1 0
0 0 3 1 1 1


2R2+R1∼

 1 0 −3 −1 −2 0
0 1 −2 −1 −1 0
0 0 3 1 1 1


R1+R3∼

 1 0 0 0 −1 1
0 1 −2 −1 −1 0
0 0 3 1 1 1


1
3R3∼


1 0 0 0 −1 1

0 1 −2 −1 −1 0

0 0 1 1
3

1
3

1
3



2R3+R2∼


1 0 0 0 −1 1

0 1 0 −1
3

−1
3

2
3

0 0 1 1
3

1
3

1
3

 ,

so

S−1 =


0 −1 1

−1
3

−1
3

2
3

1
3

1
3

1
3

 .

Thus

S−1AS =


0 −1 1

−1
3

−1
3

2
3

1
3

1
3

1
3


2 2 0
1 1 2
1 1 2

 1 −2 1
−1 1 1
0 1 1



=


0 −1 1

−1
3

−1
3

2
3

1
3

1
3

1
3


0 −2 4
0 1 4
0 1 4



=

0 0 0
0 1 0
0 0 4

 .
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Homework 16. §4.3: 1, 2, 4

Day 17 of 24 – §5.1 The scalar product

Definition 207. Let v, w ∈ Rn×1. The scalar product of v and w is

vTw =
[
v1 v2 · · · vn

]

w1

w2

...
wn

 = v1w1 + v2w2 + · · ·+ vnwn ∈ R.

Example 208.

[
3 −2 1

] 43
2

 = 3(4)− 2(3) + 1(2) = 8.

Example 209. What is the length of

x

y
v =

[
3
4

]

?

We know via the Pythagorean theorem that the length is

√
(3− 0)2 + (4− 0)2 =

√
32 + 42 =

√
3(3) + 4(4) =

√[
3 4

] [3
4

]
=
√
vT v.

Definition 210. We write ∥v∥ for the length or norm of v. By above, ∥v∥ =
√
vT v. (Consequently,

∥v∥2 = vT v.)

Example 211. What about the distance between two vectors?

x

y
v1 =

[
3
4

]
v2 =

[
−1
7

]
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The distance between them is just the length of

x

y

v1

v2

v2 − v1

So the distance from v1 to v2 is

∥v2 − v1∥ =
√

(v2 − v1)T (v2 − v1)

=

√[
−1− 3 7− 4

] [−1− 3
7− 4

]

=

√[
−4 3

] [−4
3

]
=
√

(−4)2 + 32

=
√
16 + 9

=
√
25

= 5.

Definition 212. The distance between any v1 and v2 is ∥v2 − v1∥.

Proposition 213. Let v1, v2 be vectors. If θ is the angle between v1 and v2, then

vT1 v2 = ∥v1∥∥v2∥ cos θ.

Remark 214. You can use Proposition 213 to find the angle between vectors:

vT1 v2 = ∥v1∥∥v2∥ cos θ
vT1 v2
∥v1∥∥v2∥

= cos θ.

We say that

u1 =
v1
∥v1∥

, u2 =
v2
∥v2∥

are unit vectors in the direction of v1 and v2, because their length is 1 and their direction is the same as v1
and v2. Indeed, for either u1 or u2,

∥ui∥ =
∥∥∥∥ vi
∥vi∥

∥∥∥∥ =

√
vi
∥vi∥

T vi
∥vi∥

=

√
1

∥vi∥2
· vTi vi =

1

∥vi∥

√
vTi vi =

1

∥vi∥
∥vi∥ = 1.

The direction is the same because all you’re doing is scaling v1 and v2.
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x

y

v

u = v
∥v∥

So we have

cos θ =
v1
∥v1∥

T v2
∥v2∥

= uT
1 u2.

Example 215. Continuing with the same vectors as Example 211, we have

u1 =
v1
∥v1∥

=
1√

32 + 42

[
3
4

]
=

 3
5

4
5


u2 =

v2
∥v2∥

=
1√

(−1)2 + 72

[
−1
7

]
=

 −1√
50

7√
50

 ,

so

cos θ = uT
1 u2 =

[
3
5

4
5

]  −1√
50

7√
50

 =
3

5

(
−1√
50

)
+

4

5

(
7√
50

)
=
−3 + 28

5
√
50

=
25

5 ·
√
25
√
2
=

1√
2
.

Therefore, θ = π/4.

Theorem 216 (Cauchy-Schwarz inequality). Let v, w be vectors. One has

|vTw| ≤ ∥v∥∥w∥,

and equality holds if and only if
1. v = 0 or w = 0,
2. v = αw for some scalar α.

Proof. By Proposition 213,

vTw = ∥v∥∥w∥ cos θ
|vTw| = ∥v∥∥w∥ · |cos θ| ≤ ∥v∥∥w∥ · 1 = ∥v∥∥w∥.

To see equality, it certainly holds if v = 0 or w = 0; we get 0 = 0. For #2, suppose v ̸= 0 and w ̸= 0 but

|vTw| = ∥v∥∥w∥.

Then |cos θ| = 1, so cos θ = ±1, so θ = 0 or π. That means either v and w point in the same direction or in
opposite directions, but in both cases, one is a multiple of the other.

Definition 217. If vTw = 0, then by Proposition 213, either v = 0, w = 0, or cos θ = 0. If
cos θ = 0, then θ = π/2 or 3π/2 (a right angle). We say that v and w are orthogonal if vTw = 0.

Example 218. 0 is orthogonal to every v:

0T v = 0 · v1 + · · ·+ 0 · vn = 0.
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Example 219.

[
2 −3 1

] 11
1

 = 2(1)− 3(1) + 1(1) = 0,

so  2
−3
1

 and

11
1


are orthogonal.

Remark 220. Now suppose you are handed vectors x, y, and you want to write x as x = p+ z, where p is
in the direction of y and z is orthogonal to y.

x

y
p

z

Let’s first calculate the unit vector in the direction of y:

x

y

u = y
∥y∥
p

z

Now we want to find p and z such that p = αu and z = x − αu, and pT z = 0. That means we need to
find α. Notice that if we let θ be the following angle:

x

y

u = y
∥y∥
p

z

θ

then we must have

cos θ =
xT p

∥x∥∥p∥

=
(p+ z)T p

∥x∥∥p∥

=
pT p+ zT p

∥x∥∥p∥

=
∥p∥2 + 0

∥x∥∥p∥

=
∥p∥
∥x∥

=
α

∥x∥
,
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so α = ∥x∥ cos θ. But we can simplify further:

α = ∥x∥ cos θ

= ∥x∥ cos θ∥y∥
∥y∥

=
∥x∥∥y∥ cos θ
∥y∥

=
xT y

∥y∥
. (Proposition 213)

Definition 221. Let x and y be vectors.
1. The scalar projection of x onto y is

α =
xT y

∥y∥
.

2. The vector projection of x onto y is

p = αu =
xT y

∥y∥
y

∥y∥
=

xT y

yT y
y.

Example 222. Find the point P on the line y = x/3 closest to the point (1, 4).

x

y

y = x
3

P

(1, 4)

Let

v =

[
1
4

]
, w =

[
3
1

]
, u =

w

∥w∥
,

and p the vector projection of v onto w. We are done when we find p, because the point P lies at the end
of the vector P .

x

y

v

w
p

y = x
3

P

(1, 4)
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We calculate:

p =
vTw

wTw
w =

[
1 4

] [3
1

]
[
3 1

] [3
1

] [3
1

]
=

1 · 3 + 4 · 1
3 · 3 + 1 · 1

[
3
1

]
=

7

10

[
3
1

]
=

 21
10

7
10

 .

So P = (21/10, 7/10).

Homework 17. §5.1: 1, 2, 4, 5

Day 18 of 24 – §5.2 Orthogonal subspaces

Example 223. Let

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 .

Let

v =


v1
v2
...
vn

 ∈ N(A);

in other words, Av = 0. Since Av = 0,
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn



v1
v2
...
vn

 =


a11v1 + a12v2 + · · ·+ a1nvn
a21v1 + a22v2 + · · ·+ a2nvn

...
am1v1 + am2v2 + · · ·+ amnvn

 =


0
0
...
0

 .

The ith entry is the equation

0 = ai1v1 + ai2v2 + · · ·+ ainvn =
[
ai1 ai2 · · · ain

]

v1
v2
...
vn

 .

So in other words, if we write ri for the ith row of A, we have

riv = 0.

But notice

A =



a11 a12 · · · a1n


a21 a22 · · · a2n
...

...
ai1 ai2 · · · ain ← ith row of A, ri
...

...
am1 am2 · · · amn
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AT =

ith col.
of AT , ci
↓

a11 a21 · · · ai1 · · · am1

a12 a22 · · · ai2 · · · am2

...
...

...
a1n a2n · · · ain · · · amn

So ri = cTi , and therefore

riv = 0

cTi v = 0;

i.e., v is orthogonal to any column vector of AT . Hence v is orthogonal to any linear combination of column
vectors of AT . But a linear combination of column vectors is just the column space col(AT ).

Thus, every vector in N(A) is orthogonal to every vector in colAT .

Definition 224. Let V,W ⊆ Rn be subspaces. We say V and W are orthogonal and write

V ⊥W if vTw = 0 for all v ∈ V and all w ∈W .

Example 225. Let V = Span(e1) and W = Span(e3) in R3. Pick arbitrary v ∈ V and w ∈W :

v =

a0
0

 , w =

00
c

 .

Now

vTw = a · 0 + 0 · 0 + 0 · c = 0,

so V ⊥W .

Definition 226. Let V ⊆ Rn. The set of all vectors in Rn orthogonal to every v ∈ V is
the orthogonal complement of V ,

V ⊥ =
{
w ∈ Rn | vTw = 0 for all v ∈ V

}
.

Example 227. In Example 225, V = Span(e1) and W = Span(e3) are not orthogonal complements. The
orthogonal complement of W in R3 is

W⊥ =


xy
z

 ∈ R3 |
[
0 0 c

] xy
z

 = 0 for all c


=


xy
z

 ∈ R3 | 0 · x+ 0 · y + c · z = 0 for all c


=


xy
z

 ∈ R3 | cz = 0 for all c


=


xy
0

 ∈ R3


= Span(e1, e2).
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e1
e2

e3

W

W⊥

Theorem 228.
1. If X ⊥ Y , then X ∩ Y = {0}.
2. If X ⊆ Rn is a subspace, then X⊥ ⊆ Rn is a subspace.

Proof.
1. Let v ∈ X ∩ Y . We calculate the length of v:

∥v∥ =
√

vT︸︷︷︸
v∈X

v︸︷︷︸
v∈Y

=
√

0︸︷︷︸
because X ⊥ Y

= 0.

So v’s length is 0, and v must be 0.
2. We check:

0. X⊥ ̸= ∅? Yes: 0 ∈ X⊥, because for all x ∈ X, xT 0 = 0. ✓
1. If v ∈ X⊥, is αv ∈ X⊥? Yes: xT (αv) = α(xT v) = α0 = 0. ✓
2. If v, w ∈ X⊥, is v + w ∈ X⊥? Yes: xT (v + w) = xT v + xTw = 0 + 0 = 0. ✓

Remark 229. Recall from Theorem 172 that Ax = b if and only if b ∈ colA. By Theorem 189, we can
think of Ax = b as L(x) = b for L : Rn → Rm a linear transformation. That means that b ∈ colA is the
same as b ∈ L(Rn), the range of L. We’ll write range(A) = col(A), or sometimes R(A).

Theorem 230 (Fundamental subspace theorem). Let A ∈ Rm×n.
1. N(A) = R(AT )⊥.
2. N(AT ) = R(A)⊥.

Proof.
1. We saw in Example 223 that N(A) ⊥ col(AT ) = N(A) ⊥ R(AT ). This means N(A) ⊆ R(AT )⊥,

since R(AT )⊥ is the biggest subspace orthogonal to R(AT ).
Now, if v ∈ R(AT )⊥, then v is orthogonal to every element of R(AT ) = col(AT ), so v is orthogonal to
the column vectors of AT , so Av = 0. Thus v ∈ N(A), so R(AT )⊥ ⊆ N(A).
Thus N(A) = R(AT )⊥.

2. Play the same game, and replace A with AT .

Example 231. Let

A =

[
1 0
2 0

]
.

We calculate

range(A) = col(A) = Span

([
1
2

]
,

[
0
0

])
= Span

([
1
2

])
nul(AT ) =

{[
x
y

]
∈ R2 |

[
1 2
0 0

] [
x
y

]
=

[
0
0

]}
=

{[
x
y

]
∈ R2 | x+ 2y = 0

}
= Span

([
−2
1

])
.
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Observe that if v ∈ range(A) and w ∈ nul(AT ), then

vTw =
[
α 2α

] [−2β
β

]
= α(−2β) + 2αβ = 0. ✓

Furthermore,

range(AT ) = col(AT ) = Span

([
1
0

]
,

[
2
0

])
= Span

([
1
0

])
= Span(e1)

nul(A) =

{[
x
y

]
∈ R2 |

[
1 0
2 0

] [
x
y

]
=

[
0
0

]}
=

{[
x
y

]
∈ R2 |

[
x
2x

]
=

[
0
0

]}
=

{[
0
y

]
∈ R2

}
= Span(e2).

If v ∈ range(AT ) and w ∈ nul(A), then

vTw =
[
α 0

] [0
β

]
= α · 0 + 0 · β = 0. ✓

Theorem 232.
1. If S ⊆ Rn is a subspace, then dimS + dimS⊥ = n.
2. If {v1, . . . , vr} is a basis for S and {vr+1, . . . , vn} is a basis for S⊥, then {v1, . . . , vr, vr+1, . . . , vn} is a

basis for Rn.

Proof.
1. If dimS = r ≤ n, choose a basis {v1, . . . , vr} of S. Let

A =

v1
T

...
vr

T

 ∈ Rr×n.

We’ve built A so that rankA = r (the rows form a basis, hence are linearly independent, so there are
r leading 1s in row echelon form), and range(AT ) = S.
By Theorem 230 (Fundamental subspace theorem),

S = range(AT )

S⊥ = range(AT )⊥ = N(A).

By Theorem 175 (Rank-Nullity),

dimS + dimS⊥

= r + dimN(A)
= n

2. Thanks to Theorem 156, we only need to check that {v1, . . . , vr, vr+1, . . . , vn} are linearly indepen-
dent. Suppose

c1v1 + · · ·+ crvr + cr+1vr+1 + · · ·+ cnvn = 0;

we want to show this forces all ci to be 0. Label

c1v1 + · · ·+ crvr︸ ︷︷ ︸
x

+ cr+1vr+1 + · · ·+ cnvn︸ ︷︷ ︸
y

= 0

Thus x+ y = 0, so x = −y. But since S and S⊥ are subspaces,

x ∈ S y ∈ S⊥

−y ∈ S −x ∈ S⊥

y ∈ S x ∈ S⊥.

So x, y ∈ S ∩ S⊥, and by Theorem 228, x = y = 0. This forces both c1 = · · · = cr = 0 and
cr+1 = · · · = cn = 0. Tada!
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Theorem 233. If S ⊆ Rn, then (S⊥)⊥ = S.

Proof. Recalling Definition 226,(
S⊥)⊥ =

{
w ∈ Rn | vTw = 0 for all v ∈ S⊥}

=
{
w ∈ Rn | vTw = 0 for all v ∈ Rn such that sT v = 0 for all s ∈ S

}
=
{
w ∈ Rn | vTw = 0 for all v ∈ Rn such that vT s = 0 for all v ∈ Rn

}
= {w ∈ Rn | w = s, s ∈ S}
= {s ∈ S}
= S.

Remark 234. Theorem 233 tells us that if T is the orthogonal complement to S, then S is the orthogonal
complement to T :

T = S⊥

T⊥ =
(
S⊥)⊥

T⊥ = S.

So we just say S and T are orthogonal complements, and which one gets the “⊥” doesn’t matter.

Corollary 235. Let A ∈ Rm×n and let b ∈ Rm. Either:
1. there exists x ∈ Rn such that Ax = b, or
2. there exists y ∈ Rm such that AT y = 0 and yT b ̸= 0.

Proof. By Theorem 230 (Fundamental subspace theorem), range(A) = N(AT )⊥. By Theorem 228,
since range(A) ⊥ N(AT ), we have range(A) ∩N(AT ) = {0}, so every nonzero v ∈ Rn is either in range(A)
or N(AT ) but not both. If v ∈ range(A), we’re in case #1. If v ∈ N(AT ), we’re in case #2.

Example 236. Let

A =

1 1 2
0 1 1
1 3 4

 .

Find bases for N(A), range(AT ), N(AT ), and range(A).
We calculate:

A =

1 1 2
0 1 1
1 3 4

 R3−R1∼

1 1 2
0 1 1
0 2 2

 ∼
1 1 2
0 1 1
0 0 0

 R1−R2∼

1 0 1
0 1 1
0 0 0

 .

Since

row(A) = Span
([
1 0 1

]
,
[
0 1 1

])
,

col(AT ) = range(AT ) = Span

10
1

 ,

01
1

 .

Next, if xy
z

 ∈ N(A),
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then 1 0 1
0 1 1
0 0 0

xy
z

 =

00
0

 ,

so

x+ z = 0

y + z = 0,

and hence an element of N(A) looks like −z−z
z

 ∈ Span

−1−1
1

 .

Now we calculate

AT =

1 0 1
1 1 3
2 1 4

 R2−R1∼

1 0 1
0 1 2
2 1 4

 R3−2R1∼

1 0 1
0 1 2
0 1 2

 ∼
1 0 1
0 1 2
0 0 0

 .

Since

row(AT ) = Span
([
1 0 1

]
,
[
0 1 2

])
,

col(A) = range(A) = Span

10
1

 ,

01
2

 .

If xy
z

 ∈ N(AT ),

then 1 0 1
0 1 2
0 0 0

xy
z

 =

00
0

 ,

so

x+ z = 0

y + 2z = 0,

and thus  −z−2z
z

 ∈ Span

−1−2
1

 = N(AT ).

Homework 18. §5.2: 1, 2, 9, 14

Day 19 of 24 – §5.4 Inner product spaces

Our goal is to generalize the scalar product vTw ∈ Rn to any vector space.
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Definition 237. Let V be a vector space. An inner product is a function V × V → R, written
⟨v, w⟩ for v, w ∈ V , satisfying

1. ⟨v, v⟩ ≥ 0, and ⟨v, v⟩ = 0 if and only if v = 0.
2. ⟨v, w⟩ = ⟨w, v⟩.
3. ⟨αv + βw, x⟩ = α⟨v, x⟩+ β⟨w, x⟩.

Together we call (V, ⟨ · , · ⟩) an inner product space.

Example 238. The scalar product is an example. Let

⟨v, w⟩ = vTw.

1. ⟨v, v⟩ = vT v = ∥v∥2 ≥ 0 and it is 0 when v = 0. ✓
2. ⟨v, w⟩ = vTw = wT v = ⟨w, v⟩. ✓
3. ⟨αv + βw, x⟩ = (αv + βw)Tx = (αv)Tx+ (βw)Tx = αvTx+ βwTx = α⟨v, x⟩+ β⟨w, x⟩. ✓

Example 239. For f, g ∈ C[a, b], define

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx.

1.

⟨f, f⟩ =
∫ b

a

f(x)2dx ≥ 0.

−2 −1 1 2

1

x

y

Since an integral is area under the curve, the area is 0 when f = 0. ✓
2.

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx =

∫ b

a

g(x)f(x)dx = ⟨g, f⟩. ✓

3.

⟨αf + βg, h⟩ =
∫ b

a

(αf(x) + βg(x))h(x)dx

=

∫ b

a

(αf(x)h(x) + βg(x)h(x)) dx

=

∫ b

a

αf(x)h(x)dx+

∫ b

a

βg(x)h(x)dx

= α

∫ b

a

f(x)h(x)dx+ β

∫ b

a

g(x)h(x)dx

= α⟨f, h⟩+ β⟨g, h⟩. ✓
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Definition 240. Let v ∈ (V, ⟨ · , · ⟩). The length of v is

∥v∥ =
√
⟨v, v⟩.

If ⟨v, w⟩ = 0, then v and w are orthogonal.

Theorem 241 (Pythagorean Theorem). If ⟨v, w⟩ = 0, then

∥v + w∥2 = ∥v∥2 + ∥w∥2.

Proof.

∥v + w∥2 = ⟨v + w, v + w⟩
= ⟨v, v + w⟩+ ⟨w, v + w⟩ (#3)

= ⟨v + w, v⟩+ ⟨v + w,w⟩ (#2)

= ⟨v, v⟩+ ⟨w, v⟩+ ⟨v, w⟩+ ⟨w,w⟩ (#3)

= ⟨v, v⟩+ ⟨v, w⟩+ ⟨v, w⟩+ ⟨w,w⟩ (#2)

= ⟨v, v⟩+ 2⟨v, w⟩+ ⟨w,w⟩
= ⟨v, v⟩+ 0 + ⟨w,w⟩
= ∥v∥2 + ∥w∥2.

v

w
v + w

∥v∥2

∥w∥2
∥v + w∥2

Proposition 242 (Cauchy-Schwarz inequality).

|⟨v, w⟩| ≤ ∥v∥∥w∥,

and equality holds if and only if v and w are linearly dependent.

Definition 243. Let V be a vector space. A norm is a function V → R, written ∥v∥ for v ∈ V ,
satisfying

1. ∥v∥ ≥ 0 and ∥v∥ = 0 if and only if v = 0.
2. ∥αv∥ = |α|∥v∥.
3. ∥v + w∥ ≤ ∥v∥+ ∥w∥.

#3 is called the triangle inequality.
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v

w
v + w

Example 244. We’re using the same notation because the length ∥v∥ =
√
⟨v, v⟩ =

√
vT v is a norm.

1. ∥v∥ =
√
⟨v, v⟩ ≥ 0 and is 0 if v = 0. ✓

2. ∥αv∥ =
√
⟨αv, αv⟩ =

√
α⟨v, αv⟩ =

√
α⟨αv, v⟩ =

√
α2⟨v, v⟩ = |α|

√
⟨v, v⟩ = |α|∥v∥. ✓

3. See that

∥v + w∥2 = ⟨v + w, v + w⟩ = ⟨v, v⟩+ 2⟨v, w⟩+ ⟨w,w⟩ ≤ ∥v∥+ 2∥v∥∥w∥+ ∥w∥ = (∥v∥+ ∥w∥)2
∥v + w∥ ≤ ∥v∥+ ∥w∥

✓

Example 245. Define a norm on Rn by

∥v∥p =

(
n∑

i=1

|vi|p
)1/p

.

This generalizes Example 244 because when p = 2,

∥v∥2 =

(
n∑

i=1

|vi|2
)1/2

=

√√√√√√[v1 · · · vn
] v1...

vn

.
Example 246. Define

∥v∥∞ = max
i
|vi|.

Example 247. If

v =

 4
−5
3

 ,

then

∥v∥1 = |4|+ |−5|+ |3| = 12

∥v∥2 =
√

42 + (−5)2 + 32 =
√
50

∥v∥∞ = max{|4|, |−5|, |3|} = 5.

Homework 19. §5.4: 1, 7a, 13, 14
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Day 20 of 24 – §5.5 Orthonormal sets

Definition 248. Let {v1, . . . , vn} be a set of nonzero vectors. If ⟨vi, vj⟩ = 0 for all pairs i ̸= j,
then {v1, . . . , vn} is an orthogonal set. When all the v1, . . . , vn are length 1, we call {v1, . . . , vn} an
orthonormal set.

Example 249. 
11
1

 ,

 2
1
−3

 ,

 4
−5
1


is an orothogonal set, because

[
1 1 1

]  2
1
−3

 = 1 · 2 + 1 · 1 + 1 · (−3) = 0

[
1 1 1

]  4
−5
1

 = 1 · 4 + 1 · (−5) + 1 · 1 = 0

[
2 1 −3

]  4
−5
1

 = 2 · 4 + 1 · (−5)− 3 · 1 = 0.

But it’s not orthonormal: ∥∥∥∥∥∥
11
1

∥∥∥∥∥∥ =
√
12 + 12 + 12 =

√
3 ̸= 1

∥∥∥∥∥∥
 2

1
−3

∥∥∥∥∥∥ =
√
22 + 12 + (−3)2 =

√
14 ̸= 1

∥∥∥∥∥∥
 4
−5
1

∥∥∥∥∥∥ =
√
42 + (−5)2 + 12 =

√
42 ̸= 1.

We may make an orthonormal set by normalizing the vectors, since that only changes length and not
direction:  1√

3

11
1

 ,
1√
14

 2
1
−3

 ,
1√
42

 4
−5
1

 .

Theorem 250. If {v1, . . . , vn} is an orthogonal set, then {v1, . . . , vn} are linearly independent.

Proof. Let

c1v1 + · · ·+ cnvn = 0;

we show all ci are 0. We take an inner product with one of the vi:

0 = ⟨0, vi⟩ = ⟨c1v1 + · · ·+ cnvn, vi⟩ = c1⟨v1, vi⟩+ · · ·+ cn⟨v1, vi⟩
∗
= ci⟨vi, vi⟩ = ci∥vi∥2,

so since ∥vi∥2 ̸= 0, ci = 0. But i was arbitrary, so all are 0.

83



Theorem 251. Let {u1, . . . , un} be an orthonormal basis for V . If v = c1u1 + · · ·+ cnun, then ci = ⟨v, ui⟩.

Proof.

⟨v, ui⟩ = ⟨c1u1 + · · ·+ cnun, ui⟩ = c1⟨u1, ui⟩+ · · ·+ cn⟨un, ui⟩ = c1 · 0 + · · ·+ ci · 1 + · · ·+ cn · 1 = ci.

Corollary 252. Let {u1, . . . , un} be an orthonormal basis for V . If

v = α1u1 + · · ·+ αnun

w = β1u1 + · · ·+ βnun,

then ⟨v, w⟩ = α1β1 + · · ·+ αnβn.

Proof. By Theorem 251, ⟨ui, w⟩ = βi, so

⟨v, w⟩ = ⟨α1u1 + · · ·+ αnun, w⟩
= α1⟨u1, w⟩+ · · ·+ αn⟨un, w⟩
= α1β1 + · · ·+ αnβn.

Corollary 253 (Parseval’s formula). Let {u1, . . . , un} be an orthonormal basis for V . If v = c1u1+· · ·+cnun,
then

∥v∥2 = c21 + · · ·+ c2n

Proof. By Corollary 252,

∥v∥2 = ⟨v, v⟩ = c21 + · · ·+ c2n.

Example 254.{
1√
2

[
1
−1

]
,
1√
2

[
1
1

]}
= {u1, u2} and {e1, e2}

are orthonormal bases of R2. Let

v =

[
4
2

]
.

By Theorem 251, the coordinates of v with respect to {u1, u2} are

c1 =

〈[
4
2

]
,
1√
2

[
1
−1

]〉
=

1√
2

[
4 2

] [ 1
−1

]
=

1√
2
(4 · 1 + 2 · (−1)) = 2√

2

c2 =

〈[
4
2

]
,
1√
2

[
1
1

]〉
=

1√
2

[
4 2

] [1
1

]
=

1√
2
(4 · 1 + 2 · 1) = 6√

2

By Corollary 253 (Parseval’s formula),

∥v∥2 =

(
2√
2

)2

+

(
6√
2

)2

=
4

2
+

36

2
= 2 + 18 = 20 (using {u1, u2})

∥v∥2 = 42 + 22 = 16 + 4 = 20 (using {e1, e2}).
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Definition 255. Let Q ∈ Rn×n. Q is an orthogonal matrix if the columns of Q are an orthonormal
set in Rn.

Example 256.

1√
2

[
1 1
−1 1

]
or

[
1 0
0 1

]
.

Proposition 257. Q ∈ Rn×n is orthogonal if and only if QTQ = I. In other words, QT = Q−1.

Example 258.

1√
2

[
1 −1
1 1

]
· 1√

2

[
1 1
−1 1

]
=

(
1√
2

)2 [
1 + 1 1− 1
1− 1 1 + 1

]
=

1

2

[
2 0
0 2

]
=

[
1 0
0 1

]
.

Theorem 259. If Q is orthogonal, then ⟨v, w⟩ = ⟨Qv,Qw⟩. In particular, ∥Qv∥2 = ∥v∥2, so multiplication
by Q preserves lengths.

Proof.

⟨Qv,Qw⟩ = (Qw)TQv = wTQTQv
Proposition 257

= wT Iv = wT v = ⟨v, w⟩.

For the second claim,

∥Qv∥2 = ⟨Qv,Qv⟩ = ⟨v, v⟩ = ∥v∥2,

so too ∥Qv∥ = ∥v∥ and Q preserves lengths.

Homework 20. §5.5: 1, 2, 11, 14

Day 21 of 24 – §6.1 Eigenvalues and eigenvectors

Example 260. We know a matrix A ∈ Rm×n can be thought of as a linear transformation Rn → Rm

which takes the standard basis {e1, . . . , en} to the columns of A. For instance,

A =

[
4 −2
1 1

]
maps [

4 −2
1 1

] [
1
0

]
=

[
4
1

]
[
4 −2
1 1

] [
0
1

]
=

[
−2
1

]
,

and the rest of R2 follows.
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e1

e2 Ae1
Ae2

Notice what happens to one vector in particular, v =
[
2 1

]T
:[

4 −2
1 1

] [
2
1

]
=

[
4 · 2− 2 · 1
1 · 2 + 1 · 1

]
=

[
6
3

]
.

e1

e2 Ae1
Ae2 v

Av

For this specific vector v, multiplying by A ended up being very simple: it just scaled v by 3. Convenient!

Definition 261. Let A ∈ Rn×n. A scalar λ is an eigenvalue of A if there exists a nonzero v ∈ Rn

such that Av = λv. When we have such a v, we call it an eigenvector associated to λ.

Remark 262. In Example 260, λ = 3 was an eigenvalue of A and v =
[
2 1

]T
was a corresponding

eigenvector.

Remark 263. We can rewrite Av = λv as the matrix equation

Av = λIv

Av − λIv = 0

(A− λI)v = 0.

We have an eigenvalue λ if and only if the homogeneous system (A−λI)v = 0 has a nontrivial solution v ̸= 0.
By definition, the solutions to (A−λI)v = 0 is N(A−λI), so there’s a nontrivial solution if N(A−λI) ̸= {0}.

Definition 264. We call N(A− λI) the eigenspace associated to λ.

Remark 265. By Theorem 82, (A− λI)v = 0 has nontrivial solutions if and only if (A− λI) is singular;
i.e., det(A− λI) = 0.
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Definition 266. If A ∈ Rn×n, then the expression det(A − λI) is a polynomial in the variable λ
of degree n, called the characteristic polynomial. The equation det(A − λI) = 0 is called the
characteristic equation.

Example 267. Let

A =

[
3 2
3 −2

]
.

What are the eigenvalues and eigenvectors?
We solve the characteristic equation:

0 = det(A− λI) = det

[
3− λ 2
3 −2− λ

]
= (3− λ)(−2− λ)− 2 · 3
= −6− 3λ+ 2λ+ λ2 − 6

= λ2 − λ− 12

= (λ− 4)(λ+ 3),

so the eigenvalues are λ1 = 4 and λ2 = −3.
When λ1 = 4, we have

[A− 4I | 0] =
[
−1 2 0
3 −6 0

]
∼
[

1 −2 0
3 −6 0

]
∼
[

1 −2 0
0 0 0

]
,

so x− 2y = 0, i.e., x = 2y, and therefore any multiple of

v1 =

[
2
1

]
is an eigenvector associated to λ1 = 4.

When λ2 = −3, we have

[A+ 3I | 0] =
[

6 2 0
3 1 0

]
∼
[

3 1 0
0 0 0

]
,

so 3x+ y = 0, i.e, y = −3x, and therefore any multiple of

v2 =

[
1
−3

]
is an eigenvector associated to λ2 = −3.

Remark 268. Notice that in Example 267,

detA = det

[
3 2
3 −2

]
= 3(−2)− 2(3) = −6− 6 = −12,

which was the constant term of the characteristic polynomial det(A− λI). This in fact always holds for any
A ∈ Rn×n.

Moreover, notice that the sum of the eigenvalues was 4+ (−3) = 1 which was the same as the sum of the
diagonal 3 + (−2) = 1. This too always holds.
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Definition 269. Given a matrix A ∈ Rn×n, the trace, tr(A), is the sum of the diagonal.

Theorem 270. If A ∈ R2×2, then

det(A− λI) = λ2 − trAλ+ detA.

Proof. Let

A =

[
a b
c d

]
.

det(A− λI) = det

[
a− λ b
c d− λ

]
= (a− λ)(d− λ)− bc

= ad− aλ− dλ+ λ2 − bc

= λ2 − (a+ d)λ+ ad− bc

= λ2 − trAλ+ detA.

Example 271. Let

A =

[
5 −18
1 −1

]
.

The characteristic equation is

λ2 − 4λ+ 13 = 0.

Using the quadratic formula,

λ1, λ2 =
4±

√
(−4)2 − 4(1)(13)

2(1)
=

4±
√
16− 52

2
=

4±
√
−36

2
= 2± 3i.

Theorem 272. Let A,B ∈ Rn×n. If A is similar to B, then det(A − λI) = det(B − λI), and thus A and
B have the same eigenvalues.

Proof. Recall A is similar to B if there exists a nonsingular S such that B = S−1AS. Therefore,

det(B − λI) = det(S−1AS − λI).

Notice that

S−1(A− λI)S = S−1AS − S−1λIS = S−1AS − λS−1IS = S−1AS − λI,

so

det(S−1AS − λI) = det(S−1(A− λI)S)

= det(S−1) det(A− λI) det(S)

=
1

det(S)
det(A− λI) det(S)

= det(A− λI).
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Example 273. By construction,

A =

[
2 1
0 3

]
and B =

[
5 3
3 2

]−1 [
2 1
0 3

] [
5 3
3 2

]
are similar. B is

B =
1

10− 9

[
2 −3
−3 5

] [
2 1
0 3

] [
5 3
3 2

]
=

[
2 −3
−3 5

] [
13 8
9 6

]
=

[
−1 −2
6 6

]
.

We see via Theorem 270 that

det(A− λI) = λ2 − (2 + 3)λ+ (2 · 3− 1 · 0)
det(B − λI) = λ2 − (−1 + 6)λ+ (−1 · 6 + 2 · 6)

In both cases, it is λ2 − 5λ+ 6 = (λ− 2)(λ− 3), with eigenvalues λ1 = 2 and λ2 = 3.

Homework 21. §6.1: 1abcdefg, 2, 3, 4, 10, 17

Day 22 of 24 – §6.3 Diagonalization

Remark 274. Exercise #2 in §6.1 is really cool; it tells us that if A is triangular, the eigenvalues are the
elements of the diagonal. Today we’ll study even nicer matrices: diagonal ones. We’d like to know: if you
hand me a nondiagonal A, can I rewrite A = SDS−1, where D is diagonal? That is, when is a matrix similar
to a diagonal one?

Definition 275. A ∈ Rn×n is diagonalizable if there exists a nonsingular S and a diagonal matrix
D such that

S−1AS = D.

So, when are matrices diagonalizable?

Theorem 276. If λ1, . . . , λk are distinct eigenvalues of A with eigenvectors v1, . . . , vk, then {v1, . . . , vk} are
linearly independent.

Proof. Let

dimSpan(v1, . . . , vk) = r.

We want to see that r = k but suppose for the sake of contradiction that r < k, and that only the first r
vectors {v1, . . . , vr} are linearly independent. That means {v1, . . . , vr, vr+1} is linearly dependent and

c1v1 + · · ·+ crvr + cr+1vr+1 = 0 (∗)

where not all ci are 0; in fact, cr+1 ̸= 0. Thus cr+1vr+1 ̸= 0, so that means that there has to be some nonzero
ci among the others as well.
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Next, multiply (∗) by A:

A (c1v1 + · · ·+ crvr + cr+1vr+1) = A0

c1Av1 + · · ·+ crAvr + cr+1Avr+1 = 0

c1λ1v1 + · · ·+ crλrvr + cr+1λr+1vr = 0. (∗∗)

But now we calculate (∗∗)− λr+1(∗):

(c1λ1 − c1λr+1)v1 + · · · + (crλr − crλr+1)vr + (cr+1λr+1 − cr+1λr+1)vr+1 = 0
(c1λ1 − c1λr+1)v1 + · · · + (crλr − crλr+1)vr = 0
c1(λ1 − λr+1︸ ︷︷ ︸

̸=0

)v1 + · · · + cr(λr − λr+1︸ ︷︷ ︸
̸=0

)vr = 0

But this is a list of coefficients, not all 0, showing that {v1, . . . , vr} is linearly dependent. That’s a contra-
diction, so it was wrong to suppose r < k. Thus r = k as desired.

Theorem 277. A ∈ Rn×n is diagonalizable if and only if A has n linearly independent eigenvectors
{v1, . . . , vn}.

Proof. Let

S =
[
v1 · · · vn

]
.

We can calculate:

AS =
[
Av1 · · · Avn

]
=
[
λ1v1 · · · λnvn

]
=
[
v1 · · · vn

]

λ1 0 · · · 0
0 λ2 · · · 0

...
. . .

...
0 0 · · · λn


= SD,

where D is diagonal. Furthermore, S has n linearly independent columns, so S is nonsingular, and therefore

AS = SD

S−1AS = D.

Thus, if {v1, . . . , vn} is linearly independent, then A is diagonalizable.
On the other hand, suppose A is diagonalizable. Thus

S−1AS = D

AS = SD.

Let S =
[
s1 · · · sn

]
. We have

Asi = diisi

where dii is the ith diagonal entry. But dii is just a scalar, so that’s an eigenvector equation

Asi = λisi,

and so the columns of S are eigenvectors. But S was nonsingular, so those eigenvectors are linearly inde-
pendent.
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Remark 278. Notice something else cool about diagonalizing: If A = SDS−1, then

A2 =
(
SDS−1

)2
= SDS−1SDS−1 = SD2S−1

A3 = A2A =
(
SD2S−1

) (
SDS−1

)
= SD3S−1

A4 = A3A =
(
SD3S−1

) (
SDS−1

)
= SD4S−1

...

Ak = SDkS−1.

Calculating the powers of a diagonal matrix is really easy!

D2 =


λ1

λ2

. . .

λn



λ1

λ2

. . .

λn

 =


λ2
1

λ2
2

. . .

λ2
n



D3 = D2D =


λ2
1

λ2
2

. . .

λ2
n



λ1

λ2

. . .

λn

 =


λ3
1

λ3
2

. . .

λ3
n


...

Dk =


λk
1

λk
2

. . .

λk
n

 .

Example 279. Let

A =

[
2 −3
2 −5

]
.

The characteristic equation is

λ2 − trAλ+ detA = 0

λ2 − (2− 5)λ+ (2 · (−5)− (−3) · 2) = 0

λ2 + 3λ− 4 = 0

(λ+ 4)(λ− 1) = 0,

so λ1 = −4, λ2 = 1. The eigenvectors are

[A+ 4I | 0] =
[

6 −3 0
2 −1 0

]
∼
[

2 −1 0
0 0 0

]
,

so 2x− y = 0, i.e., y = 2x, and v1 =
[
1 2

]T
, and

[A− 1I | 0] =
[

1 −3 0
2 −6 0

]
∼
[

1 −3 0
0 0 0

]
,

so x− 3y = 0, i.e., x = 3y, and v2 =
[
3 1

]T
.

Let

S =

[
1 3
2 1

]
, D =

[
−4 0
0 1

]
.
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We calculate

S−1 =
1

1− 6

[
1 −3
−2 1

]
=

1

5

[
−1 3
2 −1

]
,

so

S−1AS =
1

5

[
−1 3
2 −1

] [
2 −3
2 −5

] [
1 3
2 1

]
=

1

5

[
−1 3
2 −1

] [
−4 3
−8 1

]
=

1

5

[
−20 0
0 5

]
=

[
−4 0
0 1

]
= D. ✓

Now calculating something like

A6 = SD6S−1

=

[
1 3
2 1

] [
(−4)6 0

0 16

]
1

5

[
−1 3
2 −1

]
=

1

5

[
1 3
2 1

] [
4096 0
0 1

] [
−1 3
2 −1

]
=

1

5

[
1 3
2 1

] [
−4096 12288

2 −1

]
=

1

5

[
−4090 12285
−8190 24575

]
=

[
−818 2457
−1638 4915

]
sure beats calculating AAAAAA. ,

Definition 280. Recall the exponential function

ea = 1 + a+
1

2!
a2 +

1

3!
a3 + · · · .

Define the matrix exponential

eA = I +A+
1

2!
A2 +

1

3!
A3 + · · · .

Remark 281. If A = SDS−1 is diagonalizable, then Remark 278 tells us

eA = I +A+
1

2!
A2 +

1

3!
A3 + · · ·

= I + SDS−1 +
1

2!

(
SDS−1

)2
+

1

3!

(
SDS−1

)3
+ · · ·

= I + SDS−1 +
1

2!
SD2S−1 +

1

3!
SD3S−1 + · · ·

= S

(
I +D +

1

2!
D2 +

1

3!
D3 + · · ·

)
S−1

= SeDS−1.
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We can calculate eD:

eD = I +D +
1

2!
D2 +

1

3!
D3 + · · ·

=


1 + λ1 +

1
2!λ

2
1 +

1
3!λ

3
1 + · · ·

1 + λ2 +
1
2!λ

2
2 +

1
3!λ

3
2 + · · ·

. . .

1 + λn + 1
2!λ

2
n + 1

3!λ
3
n + · · ·



=


eλ1

eλ2

. . .

eλn

 .

Example 282. Working off of Example 279, we can calculate

eA = SeDS−1

=

[
1 3
2 1

] [
e−4 0
0 e

]
1

5

[
−1 3
2 −1

]
=

1

5

[
1 3
2 1

] [
−e−4 3e−4

2e −e

]
=

1

5

[
6e− e−4 3e−4 − 3e
2e− 2e−4 6e−4 − e

]
.

Homework 22. §6.3: 1ab, 2ab, 3ab, 18, 30ab, 31ab

Appendix: Characterizations of nonsingular matrices

Theorem. The following are equivalent:

1. A ∈ Rn×n is nonsingular. (Definition 67)
2. A−1 is nonsingular. (Definition 67)
3. A is row equivalent to I. (Theorem 82)
4. A (and A−1) is a finite product of elementary

matrices. (Definition 81)
5. Ax = 0 if and only if x = 0. (Theorem 82)
6. N(A) = {0}. (Definition 126)
7. Ax = b has a unique solution x.

(Corollary 83)
8. The columns of A are linearly independent.

(Theorem 146)
9. Ax = b has at most one solution x.

(Corollary 173)
10. The columns of A form a basis of Rn.

(Corollary 174)
11. rankA = n. (Theorem 175 (Rank-

Nullity))
12. 0 is not an eigenvalue of A. (Remark 265)
13. detA ̸= 0. (Theorem 106)

14. detAT ̸= 0. (Proposition 97)
15. AT is nonsingular. (Theorem 106)
16. (AT )−1 is nonsingular. (Definition 67)
17. A is column equivalent to I. (Theorem 82)
18. AT (and (AT )−1) is a finite product of elemen-

tary matrices. (Definition 81)
19. ATx = 0 if and only if x = 0. (Theorem 82)
20. N(AT ) = {0}. (Definition 126)
21. ATx = b has a unique solution x.

(Corollary 83)
22. The rows of A are linearly independent.

(Theorem 146)
23. ATx = b has at most one solution x.

(Corollary 173)
24. The rows of A form a basis of Rn.

(Corollary 174)
25. dim colA = n. (Theorem 178)
26. 0 is not an eigenvalue of AT . (Remark 265)
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Appendix: Definitions

A
Addition: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 36
Augment: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 15

B
Basis (pl. bases): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 150

C
Characteristic equation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 266
Characteristic polynomial: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 266
Closed (subspace): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 121
Closed (vector space): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 113
Coefficient matrix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 15
Cofactor: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 93
Cofactor expansion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 93
Column space: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 167
Column vector: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 33
Coordinate vector: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 159
Consistent: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 5

D
Determinant: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 93
Diagonalizable: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 275
Dimension: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 155
Distance between two vectors: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 212

E
Eigenspace: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 261
Eigenvalue: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 261
Eigenvector: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 261
Elementary matrix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 78
Equivalent: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 7
Exponential: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 280
Exponentiation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 60

F
Free variable: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 20

G
Gaussian elimination: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 21
Gauss-Jordan reduction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 28
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H
Homogeneous: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 30

I
Identity matrix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 63
Image (of a linear transformation): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 192
Image (of a subspace): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 192
Inconsistent: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 5
Inner product: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 237
Inner product space: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 237
Inverse: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 67
Invertible: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 67

K
Kernel (of a linear transformation): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 191
Kernel (of a matrix): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 126

L
Lead variable: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 20
Length (inner product): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 240
Length (scalar product): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 210
Linear combination (in an arbitrary vector space): . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 129
Linear combination (in Rn): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 45
Linear equation in n variables: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 3
Linear operator: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 181
Linear system of m equations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 3
Linear transformation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 181
Linearly dependent: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 140
Linearly independent: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 140

M
Matrix (pl. matrices): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 15
Matrix addition: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 36
Matrix exponential: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 280
Matrix exponentiation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 60
Matrix multiplication: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 48
Matrix subtraction: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 39
Minor: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 93
Multiplication: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 48
m× n system: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 3
m× n matrix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 15

N
Nonsingular: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 67
Norm (inner product): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 243
Norm (scalar product): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 210
Not invertible: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 67
Null space: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 126
n× n identity matrix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 63
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O
Orthogonal complement: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 226
Orthogonal set: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 248
Orthogonal (matrix): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 255
Orthogonal (subspaces): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 224
Orthogonal (vectors, inner product): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 240
Orthogonal (vectors, scalar product): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 217
Orthonormal set: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 248
Overdetermined: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 24

P
Product of an m× n matrix and an n× 1 matrix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 40
Product of an m× n matrix and an n× r matrix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 48

R
Range: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 192
Rank: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 170
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